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Goal of stellarator confinement research

Ignited (Pext ≈ 0), steady-state, non-disruptive toroidal fusion reactor

• Common physics base with tokamak, but confinement principally 
with external helical fields.

• Specification of configuration determines physics properties. Theory
—magnetics, MHD equil/stability, transport—plays  leading and 
unifying role.

• Full 3-D geometry makes major demands on physics/engineering 
optimization, design, and fabrication well in advance of operation. 

“ . . . harder to build, easier to operate . . .”

Unique features of US stellarator program

• Quasi-symmetry: performance advantages, connection w/ tokamak

• Compactness:

Near term: less expensive experiments

Long term: more accessible reactor—unit size, capital investment

• Quest for “simplicity”  
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Stellarators address with Greenwald Panel Template

Predictable, high-performance steady-state plasmas
● Equilibrium from external fields  no disruptions, avoids ELMs 
● Quiescent high-beta plasmas with confinement similar to tokamaks
● Good alpha particle confinement in optimized (e.g., quasi-sym.) configurations
● No need for current drive, rotation drive, or profile control systems in reactor.
● Very high density operation reduces fast-ion instability drive
● Strong coupling between theory, design, & experiment  predictability
● Variety of coil schemes to realize desirable magnetic configurations

Taming the plasma material interface
● 3-D divertor (islands, stochastic field lines)
● Very high density operation leads to easier plasma solutions for divertor
● No disruptions, avoids ELMs

Harnessing fusion power
● Fully ignited operation: turn off external power
● High power density (similar to ARIES-RS and –AT)
● Not limited by macroscopic instabilities
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Large stellarators have been successfully built and operated

Large Helical Device (LHD), Japan (1997)

R = 3.9 m, a = 0.6 m, B = 4 T
superconducting coils
1500 tonnes

Trim coils

trim
coils

tune
q = 1, 2 islands 

e-beam
mapping
results



6NCSX: modular coil fabrication & assembly required extensive 
innovation & development of 3-D techniques

• All 18 NCSX modular coils fabricated to 
req’d ±0.5 mm tolerance. Machining of coil 
forms required development of tools, 
process control,& load balancing between 
multiple machines.

• Coil-to-coil joining required resolution of 
complex interface issues (forces, insulation, 
permeability tolerances, clearances) & 
joining techniques (bolts, shims, welds & 
custom tooling). Substantial delays incurred 
as design challenges resolved.  Evolution in 
metrology from laser trackers to 
photogrammetry.

• Development of optimal programming for 
array of 48 planar trim coils will permit 
relaxation of tolerances. Will be tested on 
CTH torsatron (Auburn).
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• “2nd Generation”: YBCO on metal tapes

• Enabling properties for operation at liquid nitrogen temperatures
• Early development, shorter lengths (~few 100 meters)
• Cost goal 10-30 $/kA-m

High temperature superconductors for stellarator coils?
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HTS 3-phase power cable project 

suggests path for coil development 

• Tri-axial design is most compact HTS cable concept:
– Minimizes use of HTS tape
– Requires minimum surface area for cryostat-lower heat load
– Patent pending by ORNL/Southwire
– Bend radii of tape ~ 2-3 cm

• Basis for modular stellarator coil development?

– High current density very favorable for stellarator  (transform)
– Wind non-planar test coil with stainless tape (w/out HTS layer)
– Thin tape may result in  less springback, greater precision
– Further development paced by declines in superconductor cost



9Current-carrying stellarator  plasmas stabililized by external 
Operation with large bootstrap currents  principal goal of  NCSX 

• Stellarators built since 1980 (Heliotron-E, ATF, CHS, W7AS, TJ-II, LHD) 

Seldom  used/use OH, and bootstrap currents were/are small.

• Earlier devices (W7A, L-2, etc) with OH: R/a =10-20, I
oh

 < 20 kA.

Confinement minima when (OH + ext) iota profile  low shear on resonance
Transient MHD activity at edge rationals as current rises, but no disruption

• W7A  did low   exp'ts at tokamak-stellarator boundary:

Very low  ~ 0.05 obviates need for VF control

Avoided disruptions with  > 0.14  shift of J away from q = 2
• W7AS showed mitigation of deliberate q = 2 disruption  by external transform

Recovery possible if heating continues 
• W7X optimized to have low  bootstrap current in nominal target configuration.

• NCSX is first stellarator designed to use substantial current (≤150 kA) to provide 
≤50% of the total rotational transform. Simulations of discharge evolution show 
that with control of 3-D boundary shape (via control of modular coil currents), 

stable plasmas with   > 4% can be be obtained with bootstrap fraction ~25%. 
This extrapolates to ARIES-CS reactor scenario
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Stellarators are achieving outstanding results 

• Quiescent high beta plasmas, 
  limited by heating power & confinement

– LHD   = 5.2% transiently; 4.8% sustained

– W7AS   > 3.2% for 120 E

•  E similar to ELMy H-mode

• Improved confinement with quasi-symmetry
– HSX finds reduced transport of momentum, 
    particles, and heat with quasi-symmetric config.

• Very high density operation, limited only by 
  heating power, without confinement degradation

– Up to 5x equivalent Greenwald density (W7AS)

– LHD  ne(0) ~ 1021 m-3 at B=2.7T !

– Importance of divertors to control recycling

• Steady state:  LHD ~0.7 MW pulse lengths ~1 hr
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Ref. baseline parameters: 

NCSX-like (QA): 3 periods

R = 7.75 m 

a = 1.72 m 

n = 4.0 x 1020 m–3 

T = 6.6 keV 

Baxis = 5.7 T

 = 6.4%

H(ISS04) = 1.1

Iplasma = 3.5 MA (bootstrap)

25% of rotational transform

P(fusion) = 2.364 GW

P(electric) = 1 GW

Fully ignited (Pext = 0)

 US compact stellarator research program is developing 
basis for attractive reactor concepts, e.g. ARIES-CS

48.47.561.375.899.7COE(92)

LiPb/SiCLiPb/SiCLiPb/FSBlanket

-CS-AT-CS-RS-IAries-

R/a ~ 4.5

alpha loss ≈ 5%  divertor heat load ~ 5-18 MW/m2

(core radiation fraction ~75% as in ARIES tokamaks)
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Is there a shortcut from ITER to a Stellarator Demo?

• Validated models of plasma/system performance & demonstrated 
solutions to key problems are a pre-requisite to DEMO. The close 
relationship between stellarators and tokamaks may allow for some 
acceleration of this process. 

• DT experiments on ITER will test 
* dependency;
the effect of the  particles on plasma stability;
effect of -loss on PFCs;
effect of -heating on plasma profiles & operating limits.  

• Understanding of  effects from ITER can be tested on stellarators 
using isotope & fast-particle studies. External magnetic configuration 
makes stellarators less sensitive to profiles than tokamaks. 

• Quasi-symmetric stellarators are particularly attractive in this regard.
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High-: equilibrium limits rather than stability?

• Resistive modes  seen at finite  
stellarators. With exception of 
Heliotron-E ( = 1 on magnetic hill  
sawtooth) these do not lead to 
disruption.  No sign of ballooning yet 
(up to  ≈ 5% in LHD).

W7-AS

• Equilibrium reconstruction analysis 
indicates loss of 35% of minor 
radius surface break-up as  
increases. Trim coils can improve 
flux surfaces.

 = 2.7%



14LHD: evidence of high- equilibrium deterioration  
HINT-Analysis for LHDHINT-Analysis for LHD

<> ≈ 4%

<> ≈ 2%

<> ≈ 3%

S. Sakaibara, Y. SuzukiS. Sakaibara, Y. Suzuki

•  LHD is low collisionality  (W7-AS is high collisionality)
•  No disruptions.
•  Density collapse at high Shafranov shift for some configurations/profiles
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“quasi-symmetric” stellarators 

• Helical field ripple from stellarator 
coils enhances neoclassical transport 
losses. Configuration optimization 
that minimizes the effective ripple eff 
along one coordinate  produces 
“quasi-symmetric” configurations 
which can be built at low R/a: 
compact stellarators.

• US-developed configurations use:
– quasi-axisymmetry (NCSX);
– quasi-helical symmetry (HSX);
– quasi-poloidal symmetry (QPS).

• Global confinement studies (ISS04) 
suggest that anomalous transport 
may also decrease with eff . Physics 
under study (theory, LHD, HSX). 
Sheared flows, trapped particles . . .?
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HSX: Helically Symmetric Experiment

<100 kW   
            28 
GHz

ECH Power

1.0 TMagnetic Field

1.05 -1.12Rotational 
Transform

12Coils per Field 
Period

4Number of Field 
Periods

0.12 mMinor Radius

1.2 mMajor Radius

quasi-helical
symmetry

|B| 

Can spoil symmetry
by changing coil currents:
= “mirror configuration”



17In 2nd harmonic ECH plasmas, quasi-symmetry reduces 
core transport and may also reduce core turbulence

 Lower ñ in QHS

QHS

Turbulence NEW!

Peaked density profiles in QHS

 Reduced thermo-diffusion

Particles

HSX
B = 0.5 T

QHS

reflectometer

Increased E x B flow shear?

mirror

mirror

Heat

Higher Te in QHS w/ same Pabs

Lower χe

consistent with 
neoclassical theory

QHS

mirror
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anomalous core transport in HSX?

Mirror Exp

Mirror 
NeoQHS 

Neo

QHS Exp

• Fundamental ECH at B=1.0 T  Te (0) ~ 2.5 
keV. Further increase in ECH power underway. 

• Initial transport analysis (ambipolar estimate for 
Er)  core anomalous transport reduced with 
quasi-symmetry as compared to mirror? 

• Need Er measurements. CHERS being 
installed. Heavy ion beam probe being 
developed with Interscience.

• Does reduced zonal flow damping with quasi-
symmetry or  E  B shear lead to reduction of 
turbulence & anomalous transport? 

• Connect with ISS04 confinement scaling with 
ripple (eff), turbulence & zonal flow exp’ts in 
LHD, CHS. 

• Priority topic for stellarator development. 
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Divertors and impurities 
• 3-D divertor physics is being pursued vigorously in the 

W7AS/W7X (island divertor) and LHD (both island & 
helical divertors) programs with strong mutual 
collaboration.

• Divertors already effective in accessing improved 
confinement regimes of record high density in two different 
ways:

• High-power H (HDH) mode in W7AS with impurity, 
neutral screening from island divertor; detachment 
with strong radiation from island regions. 

• Super Dense Core (SDC) mode in LHD with highly 
peaked n(r): low-recycling divertor and repeating 
pellet injection

• Effective 3-D fluid modeling (EMC3); also applied to 
tokamaks.

• Both LHD, W7X committed to steady-state operation, 
however at modest P/R ~ 1-3 for immediate future. 
ARIES-CS: P/R ~60.

r

LHD helical divertor

LHD island divertor

W7AS
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Stellarator configuration improvement 
• Expand scope of  optimization used to design NCSX & QPS 

Additional physics considerations (examples):
• Relax MHD stability constraints (e.g., ballooning)
• Impact of departures from quasi-symmetry
• Trapped & energetic particle instabilities, sheared flow
• Perturbed flux surfaces (see next slide)
• Divertor geometry

Additional engineering considerations (examples):
• Limitations on coil distortions & addition of trim coils
• Coil curvature, clamping requirements
• Clearance between components
• Maximum B field, current density

• Employ new optimization tools developed in other domains.

• Possible targets: lower coil distortion, lower divertor flux, larger 
coil aperture, larger engineering , etc.
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contribute to “real world” stellarator & tokamak optimization

• Multiple, complementary approaches
- NYU: incipient island detection (Garabedian)
- PPPL/Greifswald: STELLOPT & PIES reconstruct experimental 

equilibria (Reiman et al)
- Auburn/ORNL/PPPL/GA: V3FIT magnetic equilibrium 

reconstruction; comparison w/ expt's (Hanson et al)
- ORNL: SIESTA code extends VMEC to islands (Hirshman/Sanchez)
- Columbia/PPPL/Greifswald: IPEC computes perturbed equilibrium 

incl. plasma response, tested in experiments  (Park et al).
- PPPL:  Optimal compensation of multiple helicity vacuum field 

errors using expanded set of simple trim coils (Brooks)
• Outcomes

- Minimization of perturbations in configuration optimization
- Trim coil method for optimization of experiment after construction
- Extension to ELM, disruption avoidance in tokamaks. Effects of 

ferromagnetic blanket modules.
- Improved structure for 3-D edge plasma modelling (stell. + tok.) 
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CTH explores magnetic island effects  in
current-carrying compact stellarators 

EXT(a) =0.12

EXT(a) =0.22Transient instability bursts linked 
with passage through rational 
edge transform values

Vacuum configuration studies 
Measurement & control of deliberately induced
m = 3/n = 1 island  (operation at B < 0.03 T)

• e-beam maps flux surface on fluorescent screen

• Use trim coils to null, enhance, or rotate island.

• Extend to multiple island compensation with 15 trim 
coils using Brooks optimization  from NCSX.

• Look for plasma effects before/after

Plasma behavior

q =  4 3 2
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Compact Stellarator Roadmap for the ITER Era

Goal
• Be able to reliably evaluate the operating characteristics, costs, and risks of a 

DEMO based on the quasi-symmetric (QS) compact stellarator.

QS Stellarator Knowledge Needed
• Physics: At least, a PoP test of a QS stellarator to answer key questions affecting 

design and operation, for example:
– What is the beta limit and what sets the limit?
– What levels of external transform and bootstrap current are compatible with disruption-

free operation?
– Are enhanced confinement regimes similar to tokamaks? How does confinement scale?
– What are the roles of MHD and energetic-ion instabilities?
– What divertor and edge control solutions are compatible with good core performance?

These are the same goals as for the original CS PoP program approved in 2001. 

• Engineering: Sufficient understanding to be able to estimate DEMO construction 
and operating costs.  Issues specific to stellarators:

– Manufacturability of the coils and associated structures.
– Maintainability.
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Roadmap to a Compact Stellarator PoP Decision - 1

• The loss of the PoP program to address the science of compact stellarators leaves 

a gap in the FES program. The TAP should identify this gap. 

– Community workshops will address how best to fill the gaps.

– A CS PoP program plan will be one of the workshop outcomes.

Criteria for a decision to reinstate a CS PoP program:

• Are the goals and scientific basis for the new program supported by the world 

stellarator data base?

• If the predicted reactor benefits of CS are validated, are there likely to be practical 

engineering embodiments? For what range of physics outcomes?

• Are the engineering problems encountered on NCSX and W-7X understood? What 

are the lessons learned that will preclude the recurrence of such problems in 

future stellarators? What assurances are there that a proposed PoP experiment 

can be constructed within a predictable cost and schedule?
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Roadmap to a Compact Stellarator PoP Decision - 2
Program Elements:

• Stellarator physics R&D addressing key CS physics issues and utilizing existing 
CE experiments, theory, and collaboration on international stellarators.
Goal for PoP decision point: updated physics basis for PoP program.

• CS reactor configuration improvement studies addressing issues raised by 
ARIES-CS study- simpler coils, divertors, high peak heat fluxes, manufacturability, 
maintenance, etc. Sensitivity to PoP physics outcomes.
Goal for PoP decision point: A plausible engineering embodiment for a CS reactor 
and demonstrated progress in improving the vision.

• Stellarator PoP engineering R&D addressing construction risks, and utilizing 
NCSX equipment and data.
Goal for PoP decision point: A design and implementation plan for a proposed 
PoP experiment. Sufficient technical basis to show that the project can be carried 

all the way through to completion within an acceptable level of risk.
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Compact Stellarator Roadmap

Construct

DEMO?
CS PE?

PoP
OK

Stellarator 
Physics

Stell. PoP 
Engineering

Physics 
Basis

Reduced 
Risk

PoP Test

Stell. Reactor
Configurations

PE Stellarators 

ITER 

2011 ~2025

Current Program

New CS PoP Program

International Program

Operate

20112016


