REVIEW OF TOKAMAK RESEARCH

by R.D. Stambaugh

Presented at 28th European Physical Society Conference on Controlled Fusion and Plasma Physics Madeira, Portugal

June 22, 2001

RESEARCH RESULTS FROM

Alcator C-mod **JET TCV ASDEX Upgrade** JFT-2M **TdeV** Compass-D **TEXTOR JT 60U** DIII-D **TEXT** MAST ET **NSTX TFTR** TORE-SUPRA FTU PBX-M PLT TRIAM-1M HBT-EP HIT T-10 START

SPECIAL THANKS FOR DIRECT CONTRIBUTIONS

S. Allen	R. Hawryluk	L. Lao	J. Ongena	E. Strait
S. Bernabei	J. Hosea	G.S Lee	W. Park	A. Sykes
L. Berry	A. Hubbard	F. Leuterer	R. Perkins	E. Synakowski
P. Bonoli	I. Hutchinson	B. Lipschultz	R. Pinsker	T. Taylor
K. Burrell	F. Jaeger	J. Lister	P. Politzer	A. Turnbull
M. Chu	G. Janeschitz	T. Luce	M. Porkolab	R. Waltz
E. Doyle	M. Kaufmann	D. Meade	R. Prater	M. Watkins
E. Frederickson	S. Kaye	J. Menard	F. Romanelli	R. Weynants
A. Garofalo	J. Kinsey	G. Navratil	S. Seitz	D. Whyte
C. Greenfield	A. Kitsunezaki	W. Nevins	M. Shimada	S. Wolfe
M. Greenwald	R. La Haye	H. Ninomiya	G. Staebler	

MAIN POINTS

- We have learned a tremendous amount about magnetically confined plasmas
 - Measurements and theory
 - Calculations
- Exciting new directions are opening
 - Advanced Tokamak research
- We are technically ready for next steps

OUTLINE

- The tokamak equilibrium
- Heating and current drive
- Stability
- Confinement
- Power and particle control
- Burning plasma physics
- Next steps
- Conclusions

WHAT IS A TOKAMAK?

- An axisymmetric toroidal confinement configuration with a strong toroidal plasma current and an applied toroidal magnetic field strong enough to make the edge winding factor > 2
- Not part of the basic definition but certainly part of the opportunity for variation and innovation within the concept are:
 - Shape (elongation, triangularity)
 - Aspect ratio
 - Divertor or limiter boundary
 - Toroidal field strength
 - Current profile
 - Pressure profile
 - Rotation profile
 - Radial electric field profile
 - Wall stabilization

Advanced Tokamak

MFE-Tokamak

TOKAMAKS HAVE MADE EXCELLENT PROGRESS IN FUSION POWER

PLASMA EQUILIBRIUM THEORY IS WELL UNDERSTOOD AND EXTENSIVELY USED

• Ampere's Law and the force balance equation $\overrightarrow{\nabla} \times \overrightarrow{B} = \mu_0 \overrightarrow{J}$ and $\overrightarrow{\nabla} P = \overrightarrow{J} \times \overrightarrow{B}$ lead to the Grad-Shafranov equation for the poloidal flux function.

Equilibrium codes solve this equation for the closed flux contours that give the tokamak its good confinement.

- Such codes are used extensively in
 - Experiment design, control of complex shapes is precise
 - On-line data analysis W (t), β (t), $\tau_{\rm E}$ (t)
 - Providing the geometry for transport analysis

PLASMA EQUILIBRIUM SHAPE CONTROL IS A HIGHLY DEVELOPED SCIENCE

MFE—Tokamak

SUCCESSFUL METHODS OF HEATING AND CURRENT DRIVE FOR STEADY-STATE HAVE BEEN DEVELOPED

70's / 80's / 90's

Explored heating methods
Wave coupling
Fast ion orbits
NBI deposition

Multi-MW heating
Current drive
Heating to H-mode
Global rotation
Measured bootstrap
current
Ray tracing codes
Fokker-Planck codes

Control of current profile
Control of MHD activity
High bootstrap fraction
Full wave codes

THE PLASMA'S SELF-GENERATED BOOTSTRAP CURRENT IS THE BASIS FOR MODERN APPROACHES TO STEADY-STATE OPERATION

- An element of neoclassical transport theory
- ullet J_{bs} ∞ local pressure gradient

A HIGH PERFORMANCE PLASMA WITH FULL NON-INDUCTIVE CURRENT DRIVE AND 80% BOOTSTRAP FRACTION IN JT-60U

- $H_{89}\sim3.5$, $HH_{98y2}\sim2.2$, $\beta_N\sim2$, $\beta_p\sim2.9$, $f_{BS}\sim80\%$ for $6\tau_E$ with full non-inductive CD
- Current profile was largely determined by the bootstrap current, and was nearly stationary

JT 60 also 80% bootstrap fraction

NEUTRAL BEAM HEATING AND CURRENT DRIVE

- Workhorse for high temperature and β studies
- Can drive current

NEUTRAL BEAM CURRENT DRIVE IN ACCORD WITH THEORY

Full current drive case in JT-60U (1.3 s)

ELECTRON CYCLOTRON HEATING AND CURRENT DRIVE ($\omega = n\omega_{ce}$)

 Waves propagate in vacuum, so antenna can be far from the plasma

DIII-D

 Inside the plasma the waves propagate up to a critical density (related to the plasma frequency) and are absorbed near the cyclotron resonance or its harmonics

 Damping of EC waves causes diffusion in V_⊥ direction. Collisional relaxation on ions generates current through generation of an asymmetric V_{||} distribution

 Calculational tools include ray tracing codes (TORAY, GENRAY, BANDIT-3D) and Fokker-Planck codes (CQL3D, BANDIT-3D, Giruzzi, RELAX, Krivenski, Fukuyama)

MICROWAVE ELECTRON CYCLOTRON HEATING PROVIDES LOCALIZED CURRENT DRIVE

Fully non-inductive discharges

210 kA sustained in steady state by 2.7 MW co-ECCD

LOWER HYBRID HEATING AND CURRENT DRIVE ($\omega_{ci} < \omega < \omega_{ce}$)

Tore Supra

Lower Hybrid coupling requires n_{||} >1 (Brambilla, SWAN)

Phased array or waveguides

Ray tracing: the accessible waves cross the plasma and can undergo several reflections at the edge before being absorbed.

Codes by: Cardinali, Bonoli, Ignat, Valeo, Harvey, Takase (Figures from Giruzzi)

Damping of LH waves forms a parallel energetic electron tail in the distribution function via Electron Landau Damping.

This asymmetry constitutes the non-inductive current (Fisch, Karney)

LHCD SUCCESSFUL IN MANY APPLICATIONS

 Plasma current initiated and ramped up by LHCD

- Plasma current maintained in steady state:
 - JET; 3 MA, 4 s
 - TRIAM-1M; 20 kA, 2 hr

- 2-minute-long discharge at I_p = 0.8 MA
- Injected energy = 290 MJ

ICRF HEATING AND CURRENT DRIVE ($\omega = n\omega_{ci}$) INVOLVES WAVE EXCITATION, PROPOGATION, ABSORPTION AND MODE CONVERSION

BASIC ICRF SCHEMES (MINORITY D AND 3 He, $2\omega_{CT}$) FOR A DT REACTOR HAVE BEEN VERIFIED

 Mode conversion experiments in D – ³He produced the highest electron heating efficiency in TFTR

• JET: 6 MW ICRF \rightarrow 1.66 MW fusion power

HEATING AND CURRENT DRIVE CHALLENGES FOR THE NEXT DECADE

90s / 2000 – 2010

Control of current profile

Control of MHD activity

High bootstrap fraction

Full wave codes

Current profile control

Transport barrier control

Coupling of Fokker-Planck, transport, and stability codes

Helicity injection

Strong alpha heating

MHD STABILITY PHYSICS MATURED IN THE 80's AND MOVED TO PROFILE OPTIMIZATION IN THE 90's

70's / 80's / 90's

No heating power
Equilibrium codes
Tearing modes
Sawteeth
Current limits

NBI Power

 $\beta_T = 5\%-10\%$

β-limit scaling

Pressure profile measured

Kink codes

Ballooning codes

Shaping

 $\beta_T = 13\%$

Current profile measured

Theory optimization of profiles

Profile variation and control

in experiments

Wall stabilization

Halo currents

Neoclassical tearing

Second stable edge

Advanced Tokamak

THE EFFECTS OF PLASMA INSTABILITIES RANGE FROM LOSS OF THE CONFIGURATION TO LOCAL TRANSPORT

Spatial Scale of the Mode	Mode Description	Principal Consequence	
~a	Global kink modes Ideal MHD (low n)	Disruptions β and I _p limits	
$\sim \frac{1}{5}a$	Tearing modes Resistive MHD Ideal Ballooning (n $\rightarrow \infty$)	Macroscopic Transport Profile Modification	
$\sim \frac{1}{10}a$	Edge Localized Modes	Periodic bursts at the edge	
$\rho_{\mathbf{i}}$	Ion Temperature Gradient Modes Drift Waves	Ion Transport	
$ ho_{f e}$	Electron Temperature Gradient Modes Drift Waves	Electron Transport	

IDEAL MHD INSTABILITIES LIMIT THE MAXIMUM BETA

Change in potential energy for a small displacement ξ :

STABILIZING

DESTABILIZING

Kink Mode: low n, global

Ballooning Mode: High n, localized in bad curvature region

Pressure-driven Kink (Kink-ballooning) Mode

BETA LIMIT SCALINGS WERE DERIVED THAT FIT WELL EXPERIMENTAL RESULTS

Theory calculations (1982–1984), Troyon & Sykes

$$\beta_T$$
 (%) \leq 2.8 $\frac{I(MA)}{a(m)B_T(T)}$, Define $\beta_N = \frac{\beta_T}{(I/aB)}$

$$\beta_{T} \text{ (\%)} \leq 2.8 \ \frac{\text{I (MA)}}{\text{a(m) B}_{T} \text{ (T)}} \text{, Define } \beta_{N} = \beta_{T}/\text{(I/aB)}$$

$$2.8 = \text{Troyon-kink}$$

$$4.4 = \text{Sykes-balloon}$$
 Fusion power β_{T}^{2} B⁴

Bootstrap fraction $c\epsilon^{1/2} \beta_p$

WALL STABILIZATION, PLASMA SHAPING, AND OPTIMAL PRESSURE AND CURRENT PROFILE MAY DOUBLE THE STABLE OPERATING SPACE OF THE TOKAMAK

IDEAL KINK MODE GROWTH IS SLOWED BY A RESISTIVE WALL AND RESPONDS TO FEEDBACK STABILIZATION

LOW ASPECT RATIO RAISES β_N and β_T

TEARING MODES

Classical

- Finite resistivity
- Current can diffuse and form clumps — magnetic islands on rational q flux surfaces
- Driven by ∇J
- Growth time 10s of milliseconds

Neoclassical

- ∇P=0 in island removes equilibrium bootstrap current
 - Helical current perturbation amplifies seed island
- Providing auxiliary current drive predicted to stabilize NTM

STABILIZATION OF NTMs BY ECCD

PRECISE CONTROL NEAR THE β -LIMIT IS THE KEY TO AVOIDING DISRUPTIONS

- 1. Need to operate close to stability limits
 - Good control
 - Knowledge of limits High performance DIII–D discharge regulated 5% below 2/1 tearing limit for 35 τ_{E} (6.3 seconds)
- 2. Mitigation of disruption consequences massive gas puff or pellets
 - No runaway electrons
 - Reduced halo currents and forces on structional components
 - Reduced heat pulses to the divertor surfaces

EDGE LOCALIZED MODES (ELMS) ARE NOW UNDERSTOOD TO BE INTERMEDIATE n KINKS

BOTH ALCATOR C-MOD AND DIII-D HAVE FOUND ELM-FREE REGIMES WITHOUT DENSITY OR IMPURITY ACCUMULATION

THE FUTURE

Advanced Tokamak stability theory points to states with very broad pressure profiles and hollow current profiles and nearly 100% bootstrap current as perhaps the ultimate potential of the Tokamak

STABILITY CHALLENGES FOR THE NEXT DECADE

90's / 2000–2010

 $\beta_{T} = 13\%$

Current profile measured

Theory optimization of profiles

Profile variation and control

in experiments

Wall stabilization

Halo currents

Neoclassical tearing

Second stable edge

Advanced Tokamak

Wall stabilized β-limit

Bootstrap fraction → 100%

Pressure and current profile control

Very hollow J(r)

Broad pressure profiles

Optimum edge stability

Feedback stabilization or avoidance of neoclassical tearing

Disruption mitigation

3–D MHD, understand disruptions away from β -limit

THE 90's HAVE SEEN EXCITING ADVANCES IN CONFINEMENT SCIENCE

70s / 80s / 90s

Global τ_{E} Variable results Linear theory scaling

Reproducible results (Empirical scaling)

1–D Transport codes

1-D Profile measurements

H-mode edge barrier

Wind tunnel scaling

3-D non-linear turbulence simulations

Comprehensive theory based models

Turbulence measured

Concensus on ion transport

Internal transport barriers

Neoclassical ion transport attained

E×B shear stabilization

TOKAMAK CONFINEMENT PROVED (EMPIRICALLY) PREDICTABLE

- In the 80's consistent scaling behavior was seen across many tokamaks implying
 - A common underlying transport physics was discoverable
 - Multi-machine confinement scaling relations could be constructed, e.g.

$$\begin{split} \tau_\text{E}, \, \text{th, ELMy} &= 0.85 \,\, \tau_\text{E}, \, \text{th, ELM-free} \\ &= 0.031 \,\, \text{I}_\text{p}^{1.06} \,\, \text{B}^{0.32} \\ &\quad \text{P}^{-0.67} \,\, \text{M}^{0.41} \,\, \text{R}^{1.79} \,\, \text{n}_\text{e}^{0.17} \, \epsilon^{-0.11} \,\, \kappa^{-0.6} \end{split}$$

 Dimensionless wind tunnel scaling is providing a more fundamental physics basis

STRATEGY TO CALCULATE TRANSPORT

- Theory-based 3D nonlinear simulations being used to benchmark theoretical transport models which are then compared to experiment
- Linear gyrokinetic codes describe local ballooning mode instabilities
 - Long wavelength ion temperature gradient (ITG) and trapped electron driven
 - Short wavelength electron temperature gradient (ETG) driven
- Nonlinear flux tube and approximate gyrofluid codes
 - $\rho_i/a \rightarrow 0$
 - Only local ballooning
- Nonlinear codes spanning several hundred gyroradii
 - Finite ρ_i/a
 - More time consuming
- ITG/trapped electron flux tube simulations
 have been used to benchmark gyrofluid local
 transport code models with comprehensive physics
- International profile data base after 1995 allows systematic and comparative statistical tests of transport code models

Reasonable Agreement With Experiment

RECENT EXCITEMENT TRANSPORT BARRIERS FORMED BY SHEARED E×B FLOW

SHEARED EXB FLOW SUPPRESSION OF TURBULENCE UNDERLIES BOTH EDGE AND CORE TRANSPORT BARRIERS

$$E_{r} = (Z_{i} \text{ en}_{i})^{-1} \nabla P_{i} - v_{\theta i} B_{\phi} + v_{\phi i} B_{\theta}$$
, The E×B shearing rate $\omega_{E \times B} = \left| \frac{(RB_{\theta})^{2}}{B} \frac{\delta}{\delta_{\psi}} \left(\frac{E_{r}}{RB_{\theta}} \right) \right|$

[Hahm and Burrell, Phys. Plasmas 2, 1648]

EQUILIBRIUM SCALE SHEARED EXB FLOWS CAN QUENCH ITG TRANSPORT IF THE SHEARING RATE EXCEEDS THE MAXIMUM LINEAR GROWTH RATE OF THE TURBULENCE

• ITG simulation of local annulus 160 ρ_s wide [R.E. Waltz, et al., Phys. Plasmas 1, 2229 (1994)]

• Application of E×B shear $\omega_{E\times B} \sim \gamma_{max}$ breaks up eddies and considerably

reduces transport

No E×B flow

PLASMA TURBULENCE SIMULATION CODES USE FULL TOROIDAL GEOMETRY TO CALCULATE TRANSPORT RATES

 Recent advance: Small scale sheared poloidal flows can shear apart radial eddies, reducing their radial step size and the transport by an order of magnitude

Without sheared flows

With sheared flows

ION-NEOCLASSICAL TRANSPORT WITHOUT TURBULENCE, ACROSS ENTIRE PLASMA RADIUS

- Color contour map of fluctuation intensity as function of time from FIR scattering data
 - Higher frequencies correspond to core, low to edge

 Total ion thermal diffusivity at time of peak performance

$$- H = 4.5 \quad W = 4.2 \text{ MJ}$$

$$\beta$$
 = 6.7% β_N = 4.0

CONFINEMENT CHALLENGES FOR THE NEXT DECADE

90s / 2000 – 2010

Wind tunnel scaling
3–D non-linear turbulence simulations
Comprehensive theory based models
Turbulence measured
Concensus on ion transport
Internal transport barriers
Neoclassical ion transport attained
E×B shear stabilization

Theory based calculations of transport barrier formation

Control ITB radius and gradient

Understand electron transport electron turbulence diagnostics

First-principles diffusion coefficients

Momentum and particle transport

Nonlinear turbulence simulations with both electrons an ions

Complete dimensionless scaling

Access conditions for H-mode

Edge pedestal structure

THE SCIENCE OF POWER AND PARTICLE EXHAUST LEAPED FORWARD IN THE 90's

THE JET DIVERTOR IS TYPICAL OF TOKAMAKS TODAY

Axisymmetric lower single null with graphite tiles to handle high heat flux

THE PHYSICS ELEMENTS THAT ARE DOMINANT IN THE DIVERTOR PROBLEM ARE NOW INCORPORATED IN 2-D CODES

AN EXAMPLE OF EXCELLENT AGREEMENT BETWEEN B2-E IRENE CALCULATED AND MEASURED RADIATION DISTRIBUTIONS

ASDEX-UPGRADE

Excellent agreement

RECOMBINING DIVERTOR PLASMAS DISCOVERED

Alcator C-Mod

- T_e ~ 1 eV at divertor plate (probes)
- T_e 0.4-0.6 eV in divertor plasma (spect.)

Scaling of Lyman Series Line Intensities Shows When the Upper Levels of the Lines

DIVERTOR DETACHMENT IN ALCATOR C-MOD

GOOD CONFINEMENT AT THE DENSITY LIMIT REALIZED

TEXTOR RI-MODE

JET

EXHAUST OF FUEL AND HELIUM ASH DEMONSTRATED

Plasma density regulated constant by gas fueling and divertor pumping

DIII-D Divertor 2000

 Divertor pumping prevents accumulation of helium ash (injected by neutral beams)

 Pumpout rate of helium adequate for fusion reactor

CODES TO CALCULATE THE EROSION OF DIVERTOR SURFACES ARE BEING TESTED AGAINST EXPERIMENTAL DATA

- Erosion during normal operation
 - REDEP matches DIII-D data for carbon
 - Treats physical and chemical sputtering and 2-D material transport
 - Codes: REDEP, WBC, ERO, DIVIMP, MCI, IMPMC
- Erosion during ablative heat pulses
 - 2-D codes treat vaporization melting vapor shield formation, radiation transport
 - Tested against plasma gas experiments
 - Codes: WURZ, LANGYEL, HASSANEIN

OSP Erosion and Modeling (DIII–D)

Disruption Erosion in the Divertor

Calculation by Wuerz for 1.5 m long divertor slot (ITER ~ 1 m)

POWER AND PARTICLE EXHAUST CHALLENGES FOR THE NEXT DECADE

90s / 2000 – 2010

Helium ash and fuel exhaust Radiative divertor plasmas

Recombination

2-D measurements

2-D fluid codes

Optimal plasma edge shape

2-D SOL/divertor flows

Helium and fuel exhaust in AT regimes

Use of copious core radiation

Understanding erosion and redeposition (T inventory)

Modeling and mitigating disruption erosion

SCIENTIFIC BASIS — DEEP, EXTENSIVE, FULL OF PROMISE

Area	Status	Advanced Tokamak Challenge	Promise Burning plasmas	
Heating	Understood, technology developed	Pressure profile control, alpha heating		
Current drive	Physics understood	High bootstrap fraction, local profile control	Steady-state bootstrap fraction → 100%	
Stability	Operating space understood, predictable	Wall stabilization	Double the stable operating space	
Confinement	Closing in on ability to calculate	Transport barrier control	Near neoclassical ion confinement	
Power and particle control	Major physics elements calculable	Low density divertors compatible with current drive	Steady-state with low surface erosion	

WE ARE READY TO TAKE UP BURNING PLASMA AND STEADY-STATE ISSUES

ALPHA HEATING OBSERVED

CLASSICAL ALPHA CONFINEMENT VERIFIED (TFTR)

Radial transport

Slowing down spectrum

Double Charge Exchange Technique

$$He^{++} + Li^{+} \Rightarrow He^{0} + Li^{3+}$$

THEORETICALLY PREDICTED ALFVÉN EIGENMODES WERE OBSERVED

TAE 200 kHz EAE 400 kHz

Substantial fast ion losses in TFTR from TAE modes driven by neutral beam or ICRF tail ions

AE Modes absent in highest fusion power cases

OBSERVED α -DRIVEN TAES CONSISTENT WITH FULL LINEAR THEORY

- Calculations with NOVA-K code
- Weak shear and high q(0) are destabilizing
- Weak or reverse shear plasmas in a reactor may be unstable to high-n TAEs

COPIOUS FUSION POWER HAS BEEN PRODUCED

TFTR D-T Campaign

- 10.7 MW
- PFUSION/PHEAT = 0.27
- 1.55 GJ fusion energy

JET D-T Campaign

- 16 MW
- P_{FUSION}/P_{HEAT} = 0.6
- 0.68 GJ fusion energy

THE ITER-FEAT MACHINE

Cut through cryostat,
 TF and PF coils,
 Vacuum Vessel, Blanket
 and Divertor

Fusion Ignition Research Experiment

(FIRE)

http://fire.pppl.gov

Design Goals

- R = 2.0 m, a = 0.525 m
- B = 10 T, (12T) *
- $W_{mag} = 3.8 GJ, (5.5T) *$
- $I_p = 6.5 \text{ MA}, (7.7 \text{ MA}) *$
- P_{alpha} > P_{aux} , P_{fusion} < 200 MW
- Burn Time \approx 18.5 s (\approx 12 s) *

* Higher Field Mode

Attain, explore, understand and optimize fusion-dominated plasmas that will provide knowledge for attractive MFE systems.

A Proposal of JT-60 Modification

JAERI

¥ To conduct researches on steady state operation of tokamaks

¥ To contribute to the ITER operation

¥ Under discussions at the Fusion Council

Main Parameter

Parameter	JT-60U	JT-60 (After Modification)	Compac Pulse St	ct ITER eady-state
Pulse Length	15 s	100 s	400 s	Steady
Maximum Input	40 MW (10 s)	40 MW (10 s)	73 MW	73MW
Power		≥10MW (100 s)		
Plasma Current I _p	3-5 MA	4 MA	15 MA	7.8 MA
Toroidal Field B _t	4 T (at 3.4 m)	3.8 T (at 2.8 m)	5.3 T	4.98 T
Major Radius R _p	3.4 m	2.8 -3 m (2.8 m*)	6.2 m	6.6 m
Minor Radius a _p	0.9 m	0.7-0.9 m (0.85 m*)	2.0 m	1.6 m
Elongation κ_{95}	1.8 (δ ₉₅ =0.06)	≤1.9 (1.7*)	1.7	2.0
Triangularity δ_{95}	0.4 (κ ₉₅ =1.33)	≤0.45 (0.35*)	0.35	0.35
Working Gas	DD	DD	DT	DT

* Nominal Design Value

JT-60U

After Modification

EXTENDING THE ADVANCED TOKAMAK: KSTAR

- 20–300 s pulse length (S/C technology)
- B = 3.5 T, I = 2 MA
- R = 1.8 m, a = 0.5 m
- Double-null divertor, $\kappa = 2$, $\delta = 0.8$
- 16-27 MW profile control: (neutral beam, ion cyclotron, lower hybrid)

HT-7U ADVANCED TOKAMAK – HAFEI CHINA INSTITUTE OF PLASMA PHYSICS ACADEMIA SINICA

HT-7U

Construction: Approved Conpletion: mid 2003

R/a = 1.7/0.4 m

B = 3.5 T

I = 1 MA

 $\kappa = 1.6-2.0$

 δ = 0.4–0.8

ASIPP

HT₋₇

THE ADVANCED TOKAMAK LEADS TO AN ATTRACTIVE FUSION POWER PLANT

■ The U.S. ARIES — RS system study

The Japanese SSTR system study

Attractive features

- Competitive cost-of-electricity
- Steady-state operation
- Maintainability
- Low-level waste
- Public and worker safety

	Conventional	<u> </u>	
Size, major radius (m)	8	5	
COE ¢/kWhr	~13	~7	
Power cycle	Pulsed	Steady state	ļ

MFE-Tokamaks

SUMMARY

- Research in the tokamak has greatly advanced fusion energy science
- Tokamak research has shown fusion energy is feasible in the laboratory
- The tokamak is scientifically and technically ready to proceed to burning plasma and/or steady-state next steps
- Advanced Tokamak research seeks to find the ultimate potential of the tokamak as a magnetic confinement configuration
 - Anticipated results point to practical and attractive fusion energy