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INTRODUCTION

� Advanced Tokamak results and plans

� ECH and ECCD

� Divertor research

� Stability physics

� Confinement and ITB

� Overall future plans
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THE DIII–D PROGRAM WORK WITH OTHER PROGRAMS
INTERNATIONALLY TO OPTIMIZE THE TOKAMAK APPROACH

TO FUSION ENERGY PRODUCTION

� Main focus – Advanced Tokamak research

� Resolve key enabling issues for next step toward
fusion energy

� Advance the science of magnetic confinement on
a broad front
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OUTSTANDING RECENT RESEARCH RESULTS

� Advanced Tokamak
— Good progress on AT scenarios (βN H89P ~ 9 for 2 s)
— First results using smart conducting shells for wall stabilization
— Increased physics understanding of edge and internal plasma instabilities
— Exploration of internal transport barriers with counter injection and pellets
— Exciting new work affecting turbulence using impurity atoms

� Next Steps
— New discovery — ELM-free H–mode without impurity accumulation

or density buildup
— New discovery — H–mode confinement quality above the Greenwald limit

with gas fueling and pumping
— A scientific basis for the choice of the optimum shape of the plasma

� Broad Science
— Measurement of the complex 2–D flow patterns in the edge plasma
— Studies of self-organized criticality
— Movies of edge-plasma turbulence from plasma fluctuation measurements
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• βN H89 ~9 for 2s (16τE)

• ITB Physics

• Edge Stability

• Neoclassical Tearing

• Resistive Wall Mode

• AT Divertor

• ECCD Physics Validation

6 Gyrotrons 8 Gyrotrons 9.5 MW Long Pulse

Progress 
Checkpoint

FESAC
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• Integrated long duration scenarios (10 seconds) with 
high normalized beta, confinement enhancement,
bootstrap fraction, and radiative divertor

— Use and optimization of transport barriers at high beta

— Increased stability limits

— Non-inductive current sustainment with high bootstrap current fraction

— Divertor power and particle control

DIII–D ADVANCED TOKAMAK 5–YEAR RESEARCH PLAN
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PRIMARY INTEGRATED SCENARIO NCS USING OFF–AXIS ECCD 

2001

PEC (MW) 2.3

PFW (MW) 3.5

PNBI (MW) 4.1

IP (MA) 1.0

IBOOT (MA) 0.65
IECCD (MA) 0.15

BT (T) 1.6

βN 4.0
H89P 2.8

   Wall stabilization 6-coil
  n/nG 0.3

χe – various models

(ρITB ~ ρqmin)

χi ~ neoclassical inside ρ(qmin)

~ 5 × neoclassical at edge

Solved for Te, Ti, J(r)

Off-axis ECCD

ne(r) fixed
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1.95

5.7
3.5
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SIGNIFICANT IMPROVEMENT IN LONG-PULSE 
ADVANCED TOKAMAK PERFORMANCE HAS BEEN ACHIEVED (T#2)

� Recent emphasis is on increasing the duration of high performance and
increasing the fraction of bootstrap current

� 2001 goal, βN H > 10, τdur > 2 s, fBS > 50% 

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY



DENSITY CONTROL AND NON-INDUCTIVE CURRENT SUSTAINMENT
ARE REQUIRED TO ACHIEVE STATIONARY HIGH PERFORMANCE
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�  Current profile diffuses to unstable profile �  Density continuously grows at constant β
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�  Future work
—  Density control with high triangularity closed divertor
—  Current profile control with ECCD



EC SYSTEM PLAN
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HIGH POWER EC SYSTEMS (110 GHz) BEING IMPLEMENTED
FOR ADVANCED TOKAMAK PROFILE CONTROL   

CPI Gyrotron

Mirror Interface Unit

GA Dummy Load

Cryomagnetics Magnet  

PPPL / GA Support Tank

150–00/RDS/wj

�  Short pulse (2 seconds)   
     gyrotrons

�  Long-pulse Diamond
     window gyrotrons
     (10 seconds)

All 1 MW Class Gyrotrons

—  2 from TdeV

—  1 development unit
—   3 new units

�   550 kW, 10 s test

New Diamond Window Gyrotron

—  1 from Russia



CPI GYROTRON TOTO READY FOR OPS — 650 kW
FOR 2.5 s INTO DIII–D USING PPPL LAUNCHER
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PPPL FULLY ARTICULATING ECH LAUNCHER

038–00/RDS/wj

Independently rotatable toroidal
and poloidal steering mirrors 
molybdenum on graphite

Weakly focusing fixed copper mirrors

Waveguide aperture

Co-counter experiment already performed in a single day using this launcher and TOTO



NEW CAPABILITY PROVIDED BY PPPL STEERABLE
LAUNCHER ALLOWS CO/COUNTER ECCD COMPARISON

� ECCD reversed on successive
shots using PPPL launcher

� Narrow profile of driven current:
main current drive effects
occur between one pair
of MSE chords

� Future work

038–00/RDS/wj
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—  Validation of current
      drive models

✶  X-ray camera (PPPL)

—  Validation of NTM
      stabilization by reversing
      current drive
—  Transport barrier control

—  Long-pulse steerable
      launcher (PPPL)



CPI (Scarecrow — left) and TdeV (Boris and Natasha — right)
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NEW GYROTRON ROOM IS FILLING UP



TdeV GYROTRON  #1
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EC SYSTEMS FOR LONG-PULSE DEMONSTRATION
OF INTERMEDIATE AT SCENARIOS

150–00/RDS/wj

� FY01 system — 8 gyrotrons in 8 sockets
 

— HV supply #4 to condition 2 spares while
6 gyrotrons are used for research

— Two more transmission lines so all
8 gyrotrons can be used for research

� Further system development

� Two short pulse tubes useful for
reverse shear formation during current
rise and for NTM control
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ECH/ECCD IS USEFUL CONTROL TOOL FOR EVALUATING
ELECTRON TRANSPORT AND TRANSPORT BARRIERS
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� Future work: evaluate ITB control

— Location of deposition → ρITB
— Width of deposition → width of ITB
— Steerable antennas, long pulse ECH



THE DIII–D DIVERTOR 2000 HAS SEVERAL UNIQUE FEATURES TO
SUPPORT ADVANCED TOKAMAK PROGRAM AND DIVERTOR RESEARCH

� Independently operated divertor pumps at both upper strike points and at the
lower outer strike point provide flexibilty

� Low leakage to pumping speed ratios nearly eliminates recycling through
baffle structure

— Allow particle control in a wide range of triangularity, elongation, double null
and single null

— Comparison of open and baffles configurations in same device

— Detachment control by adjusting the ratio of inboard to outboard exhausts

— Impurity enrichment by puff and pump at low density

Outer upper pump; 2 m3 s–1 : 37 m3 s–1

Inner upper pump; 1 m3 s–1 : 20 m3 s–1

Lower pump; 2 m3 s–1 : 20 m3 s–1
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NEW DIVERTOR SUPPORTS HIGH TRIANGULARITY PLASMAS
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New cryopump
expands density and

impurity control
capabilities

Private flux “dome”
protects pump,

reduces recycling

New contoured tiles
with reduced gap and

height variation

Existing baffle
nose augmented
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Impurity Control In AT Plasmas With Careful Tile Shaping
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Transition
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AT Scenario Uses Divertor Shapes For Real-time Control
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drsep ~ 0 Maintain low ne
drsep ~1 for

pumping
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With available ECH power on DIII–D, density and impurity
control are critical - these are provided by the divertor
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We have a high density divertor solution
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We have a reasonable scientific basis for a conventional long-pulse tokamak divertor
solution at high density (collisional edge, detached)

The challenge is to find self consistent operating modes for other configurations ...

— Low Te recombining plasma leads to low heat and particle fluxes at wall

— Adequate ash control, compatible with ELMing H–mode confinement

— Appropriate for future tokamaks (e.g. to high density ITER-RC)

— Concerns about simultaneously handling disruptions/ELMs and tritium inventory
which shorten divertor lifetime

(U.S. Snowmass working group, July 2000)



Detached divertors for particle and power handling
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Puff And Pump In Both The Open And Closed Divertors
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“AT Divertors are not just for heat flux reduction”
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Advances in detached plasmas by this community have made possible a high density
divertor solution (with some caveats, of course!)  ...

Heat flux control in AT plasmas is expected to require impurity flow control

— "Puff and Pump" or active flow control, need progress in understanding flows

— Lots of new, exciting physics in the pedestal and x-point region

— Now divertor particle control is vital for AT modes

— Shaped plasmas are "standard", needed for high performance

— Real Time Shape control enables H-mode power threshold control, particle control

— Current profile control (ECCD) is at the heart of the AT, Impurities are important!
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WALL STABILIZATION AND PLASMA SHAPING ESSENTIAL
FOR HIGH PERFORMANCE ADVANCED TOKAMAK OPERATION
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� βN ≡ BT/(I/aB

Ideal Stability, n = 1, GATO
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• • • motivates RWM Thrust #4 • • • motivates optimal divertor
       shape Thrust #5
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VALEN 3D FEEDBACK CONTROL MODEL PREDICTS β
 CAN BE IMPROVED TOWARDS IDEAL LIMIT IN DIII-D 
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DETAILED EDGE MEASUREMENTS AND THEORY ARE
LEADING TO AN UNDERSTANDING OF EDGE PEDESTAL PHYSICS

� Future plan to measure Jedge
to validate models with
— Lithium beam polarimetry
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� P´ exceeds prediction from first regime ballooning
� n ~ 5 driven by local P´ and local JBS

038-00 TT/rs
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THE GOAL OF THRUST 7 IS TO ESTABLISH CONTROL OVER THE
INTERNAL TRANSPORT BARRIER

• Increase spatial extent of barrier.
– Increased fusion performance.

• Control pressure gradient in barrier.
– Avoid MHD instabilities which

can terminate ITB or disrupt
discharge.

• Maintain elevated/reversed q
profile.

– Avoid MHD instabilities when
qmin⇒1.

– Impacts ITB characteristics,
especially in ne and Te profiles.

– Take advantage of favorable
impact of counter-NBCD and
bootstrap currents in
broadened barriers. Improved fusion performance

Improved
stability
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STABILITY LIMIT IMPROVES WITH INTERNAL
TRANSPORT BARRIER WIDTH AND RADIUS

� Fixed shape DND, q95 = 5.1, q0 = 3.2, qmin = 2.2
� Hyperbolic tangent pressure representation
� Ideal n = 1, wall at 1.5a
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COUNTER-NBI RESULTS IN BROADER PROFILES

• 99849 (1.17s):
– Counter-NBI
– W = 0.9 MJ
– PNBI = 11.2 MW

(6.5 MW absorbed).

• 87031 (1.82s):
– Co-NBI
– W = 1.2 MJ
– PNBI = 9.6 MW

(7.6 MW absorbed).
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COMBINATION OF ∇p AND ROTATION EFFECTS IN ωE×B NATURALLY
BROADENS COUNTER BARRIERS

• Shearing rate ωE×B separated into thermal main
ion rotation and pressure gradient terms.
– Total calculated from CER impurity

measurements.
– Main ion pressure term from profile

measurements.
– Rotation term by subtraction.

• Stability to drift ballooning modes calculated
using a linear gyrokinetic stability (GKS) code.
– Non-circular, finite aspect ratio equilibria

with fully electromagnetic dynamics.
• With counter-NBI:

– Linear growth rates smaller at at large ρ,
possibly due to higher Zeff near edge (core
Zeff ª 2.5 in both cases).

– Shearing rate profile extends to larger ρ.
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PUMPED DISCHARGES
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GAS FUELED H–MODE DISCHARGES WELL ABOVE
THE GREENWALD DENITY IN DIII–D

Gas Puffed Discharges
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GAS PUFF FUELED H–MODE DISCHARGES WITH HIGH ENERGY
CONFINEMENT ABOVE THE GREENWALD LIMIT ON DIII–D
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� Plasma stored energy, W, increases with
density after an initial decrease following the
start of gas injection

� n and W increase limited by MHD

� Stored energy is comparable to low density
discharge at the same heating power

PED
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DIII–D 150-00 jy

LOW AND HIGH DENSITY PUMPED DISCHARGES
HAVE SIMILAR DENSITY PROFILES
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HIGH FIELD SIDE PELLET INJECTION ALLOWS EVALUATION
OF INTERNAL TRANSPORT BARRIERS WITH Te ~ Ti

� HFS pellet injection yields deeper particle deposition than
LFS injection, consistant with theory

� Future work on ITB control and H–mode control with pellet

038-00/TST/jy

2.7 mm Pellets  - New capability in ITB control  HFS 45°  vs  LFS

HFS 45°
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CONFINEMENT INCREASES DRAMATICALLY WITH NEON
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� Radiated power: 3.5 MW,
75% of input power

� Stored energy increases by 80%

� Neutron rate doubles;
confinement increase
overwhelms dilution

� τE increases to H89P = 1.8
despite radiation

� τE = WPLASMA / (PINPUT - dW/dt)
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� ExB shearing rates exhibit opposite behavior, increasing in neon shot,
further suppressing turbulence:
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FUTURE RESEARCH DIRECTION -
HIGH k TURBULENCE AND ELECTRON TRANSPORT
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UCLA UCLA

� Measurements in range 0.5 < ρ < 0.8, kθ = 13.3 cm–1

038-00/TST/jy

— Improved short wavelength measurements needed (improved FIR scatting)
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STEADY-STATE, ELM-FREE, 
SAWTOOTH-FREE SHOT WITH DENSITY CONTROL
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THE 2000 DIII–D ADVANCED TOKAMAK RESEARCH THRUSTS FOR 2000–2004
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