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F.L. Hinton, M.N. Rosenbluth, S.K. Wong, Y.R. Lin-Liu, and R.L. Miller*

General Atomics
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Abstract

A modified lattice Boltzmann algorithm is shown to have much better stability to
growing temperature perturbations, when compared with the standard lattice Boltz-
mann algorithm. The damping rates of long wavelength waves, which determine stabil-
ity, are derived using a collisional equilibrium distribution function which has the prop-
erty that the Euler equations are obtained exactly in the limit of zero time step. Us-
ing this equilibrium distribution function, we show that the new algorithm has inherent
positive hyperviscosity and hyperdiffusivity, for very small values of viscosity and ther-
mal diffusivity, which is lacking in the standard algorithm. Short wavelength modes are
shown to be stable for temperatures greater than a lower limit. Results from a computer
code are used to compare these algorithms and to confirm the damping rate predictions
made analytically. Finite amplitude sound waves in the simulated fluid steepen as ex-
pected from gas dynamic theory.

*Present Address: Archimedes Technology Group, San Diego, California, U.S.A.
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1. Introduction

The lattice Boltzmann method [1] has the potential of providing fast algorithms for
fluid simulations, but it tends to be numerically unstable when temperature variations
are allowed [2–4] (the “thermal lattice Boltzmann method”). In this paper, we present
a modification of the standard lattice Boltzmann (LB) algorithm, which is much more
stable. Our new algorithm uses overrelaxation in the advection step, while the standard
algorithm uses overrelaxation in the collision step [5]. We refer to the new algorithm as
the AOR algorithm (for advection with overrelaxation). Improved stability results from
the following: When a parameter is adjusted to make the viscosity go to zero, the hy-
perviscosity also goes to zero with the LB algorithm, but remains positive with the AOR
algorithm. Short wavelength modes generated by nonlinearity, which tend to be unsta-
ble, are effectively suppressed with the AOR algorithm. We demonstrate this using a
computer code which uses the new or the old algorithm.

In lattice-based fluid simulations, fluid variables are time-advanced using a picture
of molecules with velocities which lie on a lattice, and which move between points on a
spatial lattice and then collide with each other. The fluid variables are sums, over ve-
locity lattice points, of the populations of these velocities, appropriately weighted. The
basic premise [1] is that the complexity of hydrodynamics can be described well by a
drastically simplified version of molecular dynamics.

The distribution function f is defined such that f(�x,�c, t)d3x is the number of
molecules in the spatial volume d3x at position �x, with velocity �c, at time t. The veloc-
ity �c is one of the points of a lattice in velocity space; we shall use the four-dimensional
face-centered hypercube (FCHC) lattice, because of its symmetry properties [6]. After
a time interval ∆t, a particle at position �x will move to �x + �c∆t, which defines a spa-
tial lattice. The fluid variables, the density ρ, the flow velocity �u, and the average energy
per particle ε, are defined as moments of the distribution function (d.f.), which are sums
over the lattice velocities:

ρ =
∑
�c

f, ρ�u =
∑
�c

�cf, ρε =
∑
�c

e(�c)f (1)

where e(�c) = c2/2 is the energy of a molecule with velocity �c. (The particle mass is cho-
sen to be 1 in our units). The simulation follows the fluid variables in time, for given ini-
tial and boundary conditions, by time-advancing the distribution function f and evalu-
ating these moments. Advancing f consists basically of particle advection and collisional
equilibration. Our new algorithm uses overrelaxation in the advection step.
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2. Advection with Overrelaxation

Given the fluid variables (density, flow velocity and energy density) at two previ-
ous times, and assuming the distribution function (d.f.) at the prevous times has been
set equal to the collisional equilibrium d.f. determined by the fluid variables at those
times, the fluid variables are determined at the present time by using the following three
steps.
(1) The advected d.f. is obtained from the d.f. at the previous times consistent with ad-
vection of particles from other spatial positions.
(2) The fluid variables are obtained as moments of the advected d.f.
(3) The new d.f. is given by the collisional equilibrium d.f. determined by the fluid vari-
ables.

The advected d.f. is given by

f∗(�x,�c, t) = αf(�x− �c∆t,�c, t−∆t) + (1− α)f(�x− 2�c∆t,�c, t− 2∆t) (2)

where α is the overrelaxation parameter. The result of many collisions is assumed to be
that the d.f. at time t is equal to the equilibrium d.f:

f(�x,�c, t) = feq(�x,�c, t) (3)

where feq(�x,�c, t) is given by an assumed function of �c chosen such that the particle den-
sity, momentum density, and energy density are the same as given by the advected d.f.:

∑
�c

{1,�c, e(�c)}feq =
∑
�c

{1,�c, e(�c)}f∗ (4)

We have written computer code which implements Eqs. (1), (2), and (3), and the results
will be given below.

3. The Fluid Limit

As with a real gas, we expect fluid behavior in the limit of small time intervals be-
tween collisions. The velocities �c are now assumed to be normalized so that the smallest
nonzero component along any coordinate axis is unity. The spatial grid separation is
then ∆x = ∆t. Distance is normalized to the length of the simulation. We assume that
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∆t is small enough for good resolution of the flows of interest, and expand the advected
d.f. in a Taylor series; from Eq. (2) we find

f∗ � f − (2− α)∆t
(
∂

∂t
+ �c · ∇

)
f +

1
2
(4− 3α)∆t2

(
∂

∂t
+ �c · ∇

)2

f (5)

where f = feq is the collisional equilibrium d.f.
Denoting by ψ one of the quantities {1,�c, e(�c)}, we multiply this equation by ψ and

sum over lattice velocities �c, using Eqs. (3) and (4), and obtain

(2− α)∆t
∑
�c

ψ

(
∂

∂t
+ �c · ∇

)
f − 1

2
(4− 3α)∆t2

∑
�c

ψ

(
∂

∂t
+ �c · ∇

)2

f

=
∑
�c

ψ(f − f∗) = 0 (6)

We thus obtain the fluid equations, with discretization errors of order ∆t:

∂

∂t

(∑
�c

ψf

)
+∇ ·

(∑
�c

�cψf

)
=

(2− 3α/2)
(2− α)

∆t
∑
�c

ψ

(
∂

∂t
+ �c · ∇

)2

f (7)

The first set of sums on the left hand side of Eq. (7) consists of the lowest moments
of the equilibrium d.f., the density, flow velocity and energy density, which are defined
by Eq. (1). The second set of sums on the left hand side of Eq. (7) includes the momen-
tum flux tensor,

Pij =
∑
�c

cicjf (8)

and the energy flux vector,

ρζi =
∑
�c

cie(�c)f (9)

The traceless momentum flux is defined by

ρπij =
∑
�c

(
cicj −

c2

4
δij

)
f (10)

(the trace of δij is 4, in the 4-dimensional velocity space.)
Thus, the fluid equations obtained in the limit ∆t→ 0 are

∂ρ

∂t
+

∂

∂xµ
(ρuµ) = 0 (11)
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∂(ρui)
∂t

+
∂

∂xi
(ρε/2) +

∂

∂xµ
(ρπiµ) = 0 (12)

∂(ρε)
∂t

+
∂

∂xµ
(ρζµ) = 0 (13)

where we have used the fact that the trace of the momentum flux is Pµµ = 2ρε.
For later use, we give the result of carrying out the expansion in ∆t to higher order:

∂

∂t

(∑
�c

ψf

)
+∇ ·

(∑
�c

�cψf

)
�

4∑
p=2

βp
∑
�c

ψ

(
∂

∂t
+ �c · ∇

)p
f (14)

neglecting terms of order ∆t4, where

β2 =
(2− 3α/2)

(2− α)
∆t

β3 = − (4/3− 7α/6)
(2− α)

∆t2

β4 =
(2/3− 5α/8)

(2− α)
∆t3 (15)

The O(∆t) discretization error is zero if α = 4/3, giving a first-order accurate al-
gorithm for the ideal fluid equations. Alternatively, choosing α < 4/3, the term propor-
tional to β2 can be identified with viscous stress, giving a first-order accurate algorithm
for the viscous fluid equations. (It is easily shown that the error in the mass conserva-
tion equation is of order ∆t2 in either case.)

Recalling that f = feq, it is now clear that the above fluid equations will be iden-
tical to the ideal fluid equations in the limit ∆t → 0, provided that we choose the equi-
librium d.f. to have the correct momentum flux and energy flux moments. We define the
temperature T in terms of the average particle energy by

ε =
u2

2
+ cvT (16)

where cv is the specific heat at constant volume. Since the velocity space is four dimen-
sional, there are four degrees of freedom, and so cv = 2. (We use units where the gas
constant equals unity). The correct specific heat for a diatomic gas (cv = 5/2) can be
achieved by using a somewhat more complicated equilibrium d.f., which will be subject
of another paper.

The traceless momentum flux and energy flux must have the following form, to be
consistent with the ideal fluid equations:

πij = uiuj −
u2

4
δij (17)
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and

ζi = (ε+ T )ui (18)

By substituting into Eqs.(12)-(13), we obtain the ideal fluid (Euler) equations, as re-
quired.

4. Choice of Equilibrium Distribution Function

There are many choices for the equilibrium d.f. which satisfy the requirements of
Eqs. (16), (17), and (18). The choice we make here is mainly to illustrate the stability
properties of the AOR algorithm, and to enable us to compare with the LB algorithm.
We choose an analytical form for the equilibrium d.f. so that stability properties can be
derived explicitly, by analytical means.

We write the equilibrium d.f. in the form

feq(�c) = ρF (c2/2)[1 + g(�c)] (19)

where F is determined by minimizing the sum over lattice velocities
∑
F lnF subject to

the constraints

∑
�c

F = 1,
∑
�c

e(�c)F = ε (20)

and g is determined by minimizing
∑
Fg2 subject to the constraints

∑
�c

Fg = 0,
∑
�c

e(�c)Fg = 0

∑
�c

Fgci = ui,
∑
�c

e(�c)Fgci = ζi

and

∑
�c

Fg

(
cicj −

c2

4
δij

)
= πij

where ζi and πij are assumed given and are related to �u and ε by Eqs(18) and (17).
This approach is similar to that discussed in Ref. [7].
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Our choice of the four-dimensional face-centered hypercubic FCHC lattice simplifies
the solution of these equations because of its symmetry properties [6]. We shall use the
smallest number of energy states for which a solution exists, which is three, i.e., ener-
gies n ≡ c2/2 = 0, 1, 2. Denoting by dn the number of velocities for energy n, we have
d1 = d2 = 24 for the FCHC lattice. The energy 1 velocities are the permutations of
(±1, ±1, 0, 0). The energy 2 velocities are the permutations of (±1, ±1, ±1, ±1) and
the permutations of (±2, 0, 0, 0). The number of n = 0 states may be arbitrarily as-
signed, and we choose d0 = 6, which also simplifies the solution.

We then obtain

F (0) =
1

4d0
(2− ε)2, F (1) =

1
2d1

ε(2− ε), F (2) =
1

4d2
ε2 (21)

and

g(�c) = B(n)cµuµ +D(n)cµζµ +Acµcνπµν (22)

(using the summation convention on repeated indices) where

B(n) =
8[(1 + 3

2ε)− n(1 + 1
2ε)]

ε2(2− ε) (23)

D(n) =
8[n− (1 + 1

2ε)]
ε2(2− ε) (24)

and

A =
3

ε(1 + 1
2ε)

(25)

The equilibrium exists for 0 < ε < 2, that is, 0 < T < 1
and u2 < 4(1− T ).

5. Long Wavelength Stability

We now consider long wavelength small amplitude plane waves in a uniform gas,
in order to identify the viscosity, hyperviscosity, thermal diffusivity and hyperdiffusiv-
ity from the wave damping. The conditions for numerical stability to long wavelength
perturbations, which requires the damping to be positive, will then be obtained.
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We use the dissipative fluid equations, Eq. (14) with f = f0+f1 where f0 = ρ0F0(1+
g0) corresponds to a time independent uniform state with ρ = ρ0, �u = �u0, ε = ε0, which
are all constants, and

f1 = (ρ0F1 + ρ1F0)(1 + g0) + ρ0F0g1 (26)

which contains the perturbed fluid variables ρ1, �u1, and ε1. The fluid perturbations are
assumed to have the form of plane waves, ∝ exp(i�k · �x− iωt), so that the perturbed fluid
equations become

∑
�c

ψ(ω − �k · �c)f1 =
4∑
p=2

(−i)p−1βp
∑
�c

ψ(ω − �k · �c)pf1 (27)

where the βps are given by Eq.(15). We now choose ψ to be one of the quantities {1, �c−
�u0, c

2/2 − E0}. We determine the wave frequencies in the form ω = ω1 + ω2 + ω3 + ω4,
where ω1 ∝ k, ω2 ∝ β2k

2, ω3 ∝ β3k
3, and ω4 ∝ β4k

4, where the wavenumber k is
assumed to be small.

The discretization error terms on the right hand side of this equation proportional
to β2 represent viscosity and heat conduction. We can choose α so that β2 is small,
which will make the viscosity small. Choosing

α =
4
3
− ε (28)

where ε� 1, we have

β2 �
9
4
ε∆t, β3 �

1
3
∆t2, β4 � −

1
4
∆t3 (29)

The hyperviscosity (defined in the next section) is proportional to −β4, which remains
positive as ε (and the viscosity) goes to zero. We formally take ε in Eqs.(28) and (29) to
be of order ∆t, so that β2 ∼ β3 ∼ ∆t2. Corrections to the frequency ω proportional to
β2, β3 and β4 can then be neglected on the right hand side of Eq. (27).

The solutions of Eq. (27) correspond to two transverse waves, or shear waves, and
three longitudinal waves. Of the latter, two are sound waves and the other is the ther-
mal wave. The shear wave damping will determine the shear viscosity and hyperviscos-
ity, and the thermal wave damping will determine the thermal diffusivity and hyperdif-
fusivity. The sound wave dispersion relation will determine the anomalous dispersion,
proportional to β3.
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6. Viscosity and Hyperviscosity

We now determine the damping of a shear wave, including terms of order β2k
2 (vis-

cosity) and terms of order β4k
4 (hyperviscosity). Assuming u0 = 0, ρ1 = 0, k̂ · �u1 = 0,

and ε1 = 0, using ψ = �c · �u1 in Eq.(27), the frequency is ω = −iν2k
2 where

ν2 = β2T0 (30)

By comparing with the damping rate obtained from the Navier-Stokes equations, we
identify ν2 with the kinematic viscosity. Lattice symmetry ensures isotropy for this re-
sult: it is independent of the direction of wave propagation. We note that ν2 is positive
for α < 4/3. The frequency correction proportional to β3 is zero.

We now take the wave propagation direction to be along the x axis; then the fre-
quency correction proportional to β4 is ω4 = −iν4k

4, where

ν4 = −β4T0 (31)

We define ν4 as the hyperviscosity; there is no corresponding term in the Navier-Stokes
equations. Lattice symmetry does not ensure isotropy for this result, so it would depend
on the direction of wave propagation. We note that ν4 is positive for 16/15 < α < 4/3.

When a shear wave is superimposed on a nonzero background flow with velocity u0,
and we take the direction of wave propagation to be the same as that of the flow, we
obtain a flow velocity - dependent modification of the viscosity:

ω = −iν2k
2[1− 5

6
u2

0

T0
] (32)

For stability, we must therefore require

u2
0/T0 < 6/5 (33)

This flow velocity dependence occurs because of the lattice and the particular equilib-
rium d.f. we used, and restricts the Mach number to be less than about 0.9, for numeri-
cal stability.
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7. Longitudinal Waves

Taking �u0, �k and �u1 to be in the x-direction, Eq.(27) becomes three equations for
the perturbed fluid variables U = (ρ1/ρ0, u1, ε1), of the form

MU = NU (34)

where MU contains the nondissipative terms in the perturbed fluid equations and NU

contains the dissipative terms, the right hand side of Eq. (27). The lowest order frequen-
cies, keeping only terms of order k, are the roots of det M = 0:

ω1 = ku0 (thermal wave) (35)

or

ω1 = ku0 ± kcs (sound waves) (36)

where cs = (γT0)
1/2 is the sound speed, with the specific heat ratio

γ ≡ (cv + 1)/cv = 3/2. These results are independent of the direction of wave propaga-
tion, and do not depend on the choice of equilibrium d.f.

The right hand side of Eq. (34) can be included using standard matrix perturbation
theory, to obtain the frequency corrections proportional to β2, β3, and β4.

8. Thermal Diffusivity and Hyperdiffusivity

Thermal waves have temperature and density perturbations which are such that the
pressure perturbation is zero. By considering the damping of thermal waves with zero
background flow, we find ω = −iχ2k

2 where

χ2 =
1
3
β2T0 (37)

By comparison with solutions of the Navier-Stokes equations, we identify χ2 as the ther-
mal diffusivity. Since ν2/χ2 = 3, the thermal diffusivity is positive whenever the vis-
cosity is positive. This ratio, the Prandtl number, would be closer to realistic values for
diatomic gases if a more complicated equilibrium d.f. were used, which will be the sub-
ject of another paper.
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A perturbation calculation including the β3 and β4 terms in Eq. (34) can be carried
out, as with the shear wave. The frequency correction proportional to β3 is zero. The
next frequency correction is ω4 = −iχ4k

4, where χ4 is defined as the hyperdiffusivity and
is given by

χ4 = −5
3
β4T0(1− T0) (38)

which is positive for 0 < T0 < 1.
A thermal wave with nonzero background flow was also considered. Although the

expression for the flow velocity-dependent thermal diffusivity is complicated, the re-
sult can be stated simply. In order for the thermal diffusivity to be positive, the Mach
number must be less than a critical value Mc, which depends on temperature. For
0.4 < T0 < 0.8, for example, the critical Mach number is in the range 0.48 < Mc < 0.62.

9. Comparison with the Lattice Boltzmann Method

The LB algorithm is as follows: given f(�x,�c, t−∆t), the advected distribution func-
tion is

f∗(�x,�c) = f(�x− �c∆t,�c, t−∆t) (39)

and the collision step is given by

f(�x,�c, t) = ωfeq + (1− ω)f∗(�x,�c) (40)

where ω is the collisional overrelaxation parameter, and feq is the equilibrium d.f.
We now show how the fluid equations are obtained using the LB algorithm, and de-

rive the parameters β2, β3, β4 which determine the long wavelength damping and stabil-
ity. Using Eq. (40), Taylor expansion of f∗ yields

f � feq +
(1− ω)

ω

3∑
p=1

(−∆t)p

p!
dpf (41)

where d = ∂/∂t+ �c · ∇. By expanding f consistently in powers of ∆t, we obtain

f =feq − (1− ω)
ω

∆t dfeq +
[
(1− ω)

2ω
+

(1− ω)2

ω2

]
∆t2 d2feq

−
[
(1− ω)

6ω
+

(1− ω)2

ω2
+

(1− ω)3

ω3

]
∆t3 d3feq (42)
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neglecting terms of order ∆t4.
We then obtain the fluid equations in the form given by Eq. (14) with the defini-

tions

β2 =
(

1
ω
− 1

2

)
∆t (43)

β3 = −
[(

1
ω
− 1

)2

+
1
ω
− 5

6

]
∆t2 (44)

β4 =

[(
1
ω
− 1

)3

+
3
2

(
1
ω
− 1

)2

+
7
12

(
1
ω
− 1

)
+

1
24

]
∆t3 (45)

which can be compared with Eq. (15). From this point, the long wavelength analysis is
the same for both algorithms; in particular, the viscosity is proportional to β2 and the
hyperviscosity is proportional to −β4.

The viscosity is positive when ω < 2. We can choose ω so that β2 and the viscosity
are small: with

ω = 2− ε (46)

where ε� 1, we have

β2 � ε∆t/4, β3 � ∆t2/6, β4 � −ε∆t3/24 (47)

Note that −β4, which is proportional to the hyperviscosity, is also small when the vis-
cosity is small. We take this as an indication that short waves generated by nonlinearity
may be unstable using the LB algorithm.

This is the most important difference between the AOR and LB algorithms, since β4

does not go to zero when β2 goes to zero using the AOR algorithm: see Eq. (29). When
the viscosity and thermal diffusivity are very small, short wavelength numerical instabil-
itites will be effectively damped using the AOR algorithm, but not using the LB algo-
rithm. Thus, we expect the AOR algorithm to be numerically more stable than the LB
algorithm, and this is evident in the simulation results described in Section 11.
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10. Short Wavelength Stability

We now consider the stability of the basic AOR algorithm, Eqs.(2)-(4) to perturba-
tions with short wavelengths, assuming zero unperturbed flow, u0 = 0, and propagation
in the x-direction. We use f = f0 + f1 where f0 is the equilibrium d.f. for uniform den-
sity and temperature, and f1(x,�c, tn) ∝ λn exp(ikx). Stability requires

|λ| ≤ 1 (48)

Then we have
∑
�c

ψ(f1 − f1∗) = 0 (49)

where the perturbed equilibrium d.f. f1 is given by Eq.(26) and the perturbed advected
d.f. is

f1∗ = f1

[
α

λ
exp(−iΘcx) +

(1− α)
λ2

exp(−2iΘcx)
]

(50)

where Θ = k∆x, ∆x is the grid spacing and cx is now normalized to ∆x/∆t, where
∆t = tn+1 − tn is the time step. In the following, we consider only the shortest possi-
ble wavelength, k∆x = π.

For transverse modes, ψ = cy and we obtain the dispersion relation

λ2 − αµλ+ α− 1 = 0 (51)

where

µ =
∑
�c

c2yF0[B0 + 3T0D0](−1)cx = 1− T0 (52)

where B0 and D0 are given by Eqs.(23) and (24) with E = E0. These modes are stable
for 0 ≤ T0 ≤ 1.

For longitudinal modes, λ is again determined by Eq. (51) where now µ is an eigen-
value of the matrix h, where

hij =
∑
�c

ψigjF0(−1)cx (53)

with g1 = 1, g2 = [B0 + 3T0D0]cx, and g3 = (∂F0/∂E0)/F0.
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The matrix h has a simple block structure; the eigenvalues which correspond to
nonzero ρ1 and E1 are stable for 0 ≤ T0 ≤ 1. The eigenvalue which corresponds to
nonzero u1 is stable if T0 ≥ 1/3. We thus obtain the temperature range for stability,

1/3 ≤ T0 ≤ 1 (54)

11. Simulation Results using the LATTICE4 Code

We have written a computer code, LATTICE4, which uses the AOR algorithm and,
optionally, the LB algorithm, in order to varify the stability of the AOR algorithm and
compare the algorithms. The initial conditions for the results given below correspond
to the types of waves we have discussed above. Periodic boundary conditions were used.
The computed fluid moments are analyzed by fitting them to propagating waves, in or-
der to determine the phase velocities and damping rates. The Mach number is defined in
terms of the unperturbed flow velocity and temperature: M ≡ u0/(γT0)1/2. The overre-
laxation parameter α was determined from α = (4/3)(1−β2)/(1−(2/3)β2), with β2 being
an input parameter. The spatial coordinates were normalized so that ∆x = 1. For most
of the cases discussed below, the wavenumber was k = 0.049, for which the wavelength
equals the length of the simulation, L = 128.

Figure 1 shows the transverse velocity and the temperature perturbation, obtained
using the AOR algorithm, for a sinusoidal shear flow convected by a uniform flow at
Mach 0.2, for T0 = 0.4. We set β2 = 0, so the viscosity should be zero; the wave is
damped very slightly, by hyperviscosity. The initial rapid damping is due to the fact
that only one past time is available for the first time step, so the parameter α must be
set equal to unity for the first step; a few time steps are required before the damping
rate predicted for the AOR algorithm is achieved. The very small temperature perturba-
tion shown is due to hyperviscous heating. The dotted curves show the fitted sinusoidal
waves with twice the wavenumber, which is consistent with the heating being nonlinear
in the velocity derivatives.

When the LB algorithm is used, shear waves are unstable, as shown in Fig. 2, for
the same parameters used in Fig. 1. The growing short wave temperature perturbations
cause the shear wave to break up, starting at around the last time shown.

Shear waves simulated using the AOR algorithm with different wavenumbers were
used to fit the damping rate Γ to

Γ(k) = ν2k
2 + ν4k

4 (55)
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for T0 = 0.4, M = 0.1 and two different values of β2. The viscosity ν2 and hyperviscosity
ν4 agree reasonably well with the analytical results, Eqs. (30), (31), (32), and (29). For
β2 = 0.10, the code results are ν2 = 3.96 × 10−2 and ν4 = 6.3 × 10−2, to be compared
with the analytical results ν2 = 3.95× 10−2 and ν4 = 7.7× 10−2. For β2 = 0.01, the code
results are ν2 = 3.98 × 10−3 and ν4 = 9.2 × 10−2, to be compared with the analytical
results ν2 = 3.95× 10−3 and ν4 = 9.8× 10−2.

The viscosity was determined for different Mach numbers, for two different values of
β2, for T0 = 0.4. The Mach number dependence agrees reasonably well with Eq. (32).
For β2 = 0.10, we find ν2(M) = 0.042(1.0− 0.48M2), to be compared with the analytical
result ν2(M) = 0.040(1.0 − 1.25M2). For β2 = 0.01, we find ν2(M) = 0.0044(1.0 −
0.45M2), to be compared with the analytical result ν2(M) = 0.004(1.0− 1.25M2).

The damping rates for thermal waves convected by a uniform flow at Mach 0.1 for
T0 = 0.4, using the AOR algorithm, were calculated for different values of β2, and fitted
to

Γ(k) = χ2k
2 + χ4k

4 (56)

The thermal diffusivity χ2 and hyperdiffusivity χ4 agree reasonably well with the an-
alytical results neglecting finite M corrections, Eqs. (37) and (38). For β2 = 0.10, we
find χ2 = 1.2 × 10−2 and χ4 = 5.6 × 10−2, to be compared with the analytical re-
sults χ2 = 1.3 × 10−2 and χ4 = 7.7 × 10−2. For β2 = 0.01, we find χ2 = 1.1 × 10−3

and χ4 = 4.6 × 10−2, to be compared with the analytical results χ2 = 1.3 × 10−3 and
χ4 = 9.8× 10−2.

When the LB algorithm was used, thermal waves were found to be generally unsta-
ble, with the temperature and density perturbations growing in time, especially when
the thermal diffusivity is very small, and for shorter wavelengths. This may be the cause
of the instability which breaks up shear waves, when using the LB algorithm, as shown
in Fig. 2. That is, the temperature perturbation generated by heating is unstable.

The dispersion curves for small amplitude (ρ1/ρ0 = 0.01) sound waves were de-
termined for two different temperatures, T0 = 0.35 and 0.45, and for flow velocities
u0x = −0.15, 0.0, and 0.15, using the AOR algorithm. The wave frequency was fitted
to a function of wavenumber,

ω = ku0 + kcs + δ3k
3 (57)

where cs = (γT0)
1/2 is the sound speed and δ3 is the anomalous dispersion coefficient.

The measured specific heat ratio is in excellent agreement with the theoretical value
γ = 1.5, with relative errors less than 1.6 × 10−4. The anomalous dispersion term, pro-
portional to δ3 gives a very small correction to the phase velocity, of about 3× 10−3.
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When the LB algorithm was used, sound waves were found generally to be unstable,
for most of the parameters used in these tests.

As a further test of the realism of the simulation, a larger amplitude (ρ1/ρ0 = 0.1)
sound wave propagating upstream through a uniform flow in the −x direction at Mach
0.2 with temperature T0 = 0.4 was used. It was found to steepen as expected from
gas dynamic theory. An estimate of the steepening time, ts ∼ 1/(ku1), is about 250
time steps. In Fig. 3 we show the density and temperature waves every 50 time steps, as
calculated by the code, for 250 time steps. The sound wave becomes very steep in that
time, as expected from gas dynamic theory.

12. Discussion and Conclusions

We have presented a new algorithm for compressible fluid simulations, which is a
modification of the standard lattice Boltzmann algorithm [1]. We have used the LAT-
TICE4 code to demonstrate the greatly improved numerical stability obtained with the
new algorithm, compared with the standard algorithm.

The new (AOR) algorithm is similar to the Chapman-Enskog method for deriving
fluid equations from the Boltzmann equation. The Boltzmann equation is not used, how-
ever; thus, it is different from the LB method, which uses a discretized form of the Boltz-
mann equation. At each time step the velocity distribution function is set equal to the
collisional equilibrium distribution function. This guarantees that the fluid variables will
evolve like solutions of the ideal fluid equations, except for the small effects of nonzero
spatial and temporal discreteness. The leading order effects of discreteness appear as
viscosity and thermal diffusivity, and are similar to real gas dissipation effects, which are
a result of nonzero mean free path. The size of these dissipation effects is controlled by
the advection overrelaxation parameter α, and can be made arbitrarily small. Higher
order effects of discreteness appear as anomalous dispersion, and as hyperviscosity and
hyperdiffusivity, which have a stabilizing effect in the AOR algorithm which is absent in
the LB algorithm, when the viscosity and thermal diffusivity are very small.

The damping rates of shear waves and thermal waves in the simulated fluid were
used to determine viscosity, thermal diffusivity, hyperviscosity and hyperdiffusivity. Rea-
sonably good agreement with analytical predictions was obtained. Also, the anomalous
dispersion of sound waves, determined by measurements of the phase velocity, was shown
to be very small, and sound waves were shown to steepen, in agreement with gas dy-
namic theory.

Lattice methods usually simulate a fluid with unrealistic properties resulting from
the use of a lattice, i.e., lattice artifacts [8]. In order not to confuse the stability issue,
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we used a type of collisional equilibrium which has exactly zero artifacts at the Euler
level of description, i.e., the Euler equations are obtained exactly in the limit of zero
time step. This equilibrium has a simple analytical form which is possible because of the
choice of the four-dimensional face-centered hypercubic (FCHC) lattice [6], and which
makes possible analytical predictions of stability to long wave perturbations.

Some lack of realism remains, however, because of the choice of this equilibrium and
the use of only three energy states: the specific heat ratio is 3/2, not 7/5, the viscosity
and thermal diffusivity decrease with increasing Mach number, and the Prandtl number
is unrealistically large. These unrealistic features can be eliminated by a different choice
of collisional equilibrium and the inclusion of more energy states, which will be the sub-
ject of a future paper.

The dependence of the wave damping rates, on background temperature and flow
velocity, is a consequence of the particular collisional equilibrium distribtion function
used. When this is given by Eqs. (19), (21), and (22), the requirement of positive wave
damping (the most restrictive being the thermal wave) requires the Mach number to be
less than 0.48, for temperatures in the range 0.4 < T0 < 0.8, for example. The tempera-
ture is only required to be in the range 1/3 ≤ T0 < 1, for short wavelength stability.

Lattice methods should be fast, compared with conventional methods used in com-
putational fluid dynamics, since they involve relatively simple operations. They are
highly parallel when implemented using domain decomposition on massively parallel
computers, because communication between processors is only required for particle ad-
vection near subdomain boundaries. The code LATTICE4, which was used to obtain the
simulation results given in this paper, uses domain decomposition and MPI [9], a stan-
dard method for interprocessor communication. Fig. 3 was made using the data calcu-
lated on a Linux Beowulf cluster[10] using 16 processors.

We believe that this technique would be useful in simulating compressible fluid flows
under conditions where the effects of viscosity and thermal diffusivity are very small.
The most limiting feature is the limitation to Mach numbers less than unity; this will be
addressed in future work.
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Fig. 1.  (a) Transverse velocity as a function of x for a shear wave, using the
AOR algorithm; (b) time dependence of the amplitude of the shear wave;
(c) temperature perturbation due to heating by the shear wave.
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Fig. 2.  (a) Transverse velocity as a function of x for a shear wave, using the
LB algorithm; (b) time dependence of the amplitude of the shear wave; (c)
temperature perturbation due to heating by the shear wave, showing the growth
of unstable short wavelength temperature perturbations for later times.
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