
  

GA–A26199 

REMOTE CONTROL OF A FUSION FACILITY 

by 
D.P. SCHISSEL, G. ABLA, D.A. HUMPHREYS, B.G. PENAFLOR,  

B.S. SAMMULI, and M.L. WALKER 

 

 

 

 

 

 
 
 

 
FEBRUARY 2009 



 

DISCLAIMER 

 

This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 

 

 



  

GA–A26199 

REMOTE CONTROL OF A FUSION FACILITY 

by 
D.P. SCHISSEL, G. ABLA, D.A. HUMPHREYS, B.G. PENAFLOR,  

B.S. SAMMULI, and M.L. WALKER 

This is a preprint of a paper to be presented at the 

Twenty-Fifth Symposium on Fusion Technology, 

September 15-19, 2008, in Rostock, Germany, and to 

be published in Fusion Engineering and Design. 

 

Work supported by 
the U.S. Department of Energy 

under DE-FC02-01ER25455 

GENERAL ATOMICS PROJECT 30106 
FEBRUARY 2009 



D.P. Schissel et al. Remote Control of a Fusion Facility 

  General Atomics Report GA–A26199 iii 

ABSTRACT 

Magnetic fusion experiments keep growing in size and complexity resulting in a 
concurrent growth in collaboration between experimental sites and laboratories worldwide. 
This scientific collaboration activity is strong at existing experimental sites, is a major 
element of machines just coming on line, and is also a thrust of experiments that will come 
on line in the next decade. Computer science research into enhancing the ability to 
scientifically participate in a fusion experiment remotely has been growing in size in an 
attempt to better address the needs of fusion scientists worldwide. The natural progression of 
this research is to examine how to move from remote scientific participation to remote 
hardware control. This paper examines the challenges associated with remote experimental 
device control and proposes a solution based on a semantic approach that defines a 
gatekeeper software system that will be the only channel of interaction for incoming requests 
to the experimental site. The role of the gatekeeper is to validate the identification and access 
privilege of the requestor and to ensure the validity of the proposed request. The gatekeeper 
will be a modular system, transparent to end-users, and allow a high volume of activity.  
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1.  INTRODUCTION AND VISION 

The next generation of magnetic fusion experiments will be the largest and most 
expensive scientific instruments ever built for fusion research. Concurrent with their growth 
in size and complexity is the growth in collaborations between experimental sites and 
laboratories worldwide. The importance and cost of these devices requires that they operate 
securely at the highest possible level of scientific productivity. It is believed that for 
experiments as complex as those carried out in this field, scientific productivity is 
inextricably linked to the capability and usability of their data and computing systems. Thus, 
careful consideration must be given to choices for architecture and technologies when 
designing a system that is so crucial to the overall project’s success. Most importantly, the 
systems must be designed to meet the needs of the hundreds of scientists and engineers who 
will use them.  

It is our vision that the Gatekeeper software system will be the only channel of 
interaction for incoming requests from experimental sites as well as on-site generated 
requests. To ensure integrity of the device’s systems, the operation of the gateway must be 
obvious and verifiable. At the same time, it should be transparent to end-users and allow a 
high volume of activity so as to not provide a work bottleneck.  

The vision for the Gatekeeper is that it be a modular system that is simple in design and 
defined in a way that makes its implementation and operation transparent and obvious. Care 
must be taken to ensure that it is effective, reliable, reasonably simple, testable, verifiable, 
and that it robustly supports remote participation.  
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2.  GATEKEEPER DESIGN  

The decision making process of the Gatekeeper requires following several specific func-
tionalities: (1) Verify the identity and access control permission of requestor (authentication 
and authorization). (2) Ensure the safe arrival of requests. (3) Validate the format and 
appropriateness of requests. Figure 1 represents the pipeline of Gatekeeper’s functionalities.  

 
Fig. 1. The overall functional design of the Gatekeeper system. 

The creation of an efficient and reliable Gatekeeper relies on a system design that is stan-
dard, flexible and modular. Using standard technologies can guarantee that the Gatekeeper 
continues to be efficient during the lifetime of the fusion experimental device. Flexibility 
supports iterative development and helps the system to evolve as technology advances. 
Modularity allows any of its parts to be updated, if needed, without affecting other 
components.  

Based on these principles, a prototype Gatekeeper has been designed and several 
technologies chosen to implement the necessary functionalities. Care was taken to make sure 
that the design was platform independent and that there is a clear interface between request 
clients, Gatekeeper functionality pipeline components and fusion device control hardware.  

This paper describes the design issues and solutions for the components of the 
Gatekeeper. The front end of the Gatekeeper is designed as a web service. It mainly receives 
control requests coming from remote sites and provides a response. On the back end, it 
processes requests by utilizing a validation process pipeline. Based on the validation results, 
a decision will be made to accept or reject the request. If the request is rejected the client will 
be notified about the rejection along with appropriate details. Accepted requests will be 
passed onwards to the hardware control component of the fusion facility and the client will 
be notified with a status update. In some cases where the request involves numerous steps to 
complete, a client may receive multiple status updates. The request format uses XML format 
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along with standardized XML schema [1]. The authentication and authorization process for 
security depends on X.509 technology along with a resource-based authorization scheme. 
The multiple components of technical content validation communicate and coordinate via a 
logic module dispatcher based-on a distributed computational framework.   
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3.  REQUEST SECURITY  

The Internet is an open system, where the identity of the communicating partners is not 
easy to ensure. Furthermore, the communication path traverses an indeterminate set of 
routing hosts and may include any number of eavesdropping and active interference 
possibilities. Thus, Internet communication is much like anonymous postcards, which are 
answered by anonymous recipients. The worldwide distribution of next generation fusion 
experiments creates a Virtual Organization that requires a secure solution to this 
communication dilemma. In today’s distributed world there are actually a number of 
different ways to solve this problem. These solutions all provide the ability to authenticate 
the identity of the communicator, the ability to authorize if the communicator is allowed to 
make the specific request, and the ability to ensure the integrity of the communication so that 
it cannot be modified while in transit. Authentication is the process in a computerized 
transaction that gives assurance that a person or computer acting on a person’s behalf is not 
an imposter. Authorization is the process of determining, by evaluating applicable access 
control information, whether a subject is allowed to have the specified types of access to 
particular resource. Encryption is a technique of preventing unauthorized access while the 
request is in transit.  

The remote control vision outlined in this paper requires a secure communication solution 
yet the design is modular so that as security techniques evolve new solutions can be 
substituted for older ones. For the sake of elucidating the security concepts a specific solution 
is discussed. The implementation for establishing the identity of a communicator 
(authentication) and for determining whether an operation is consistent with agreed upon 
sharing rules (authorization) frames and ultimately defines the virtual organization. 

3.1.  AUTHENTICATION 

Public-key cryptograph [2] is a solution for key distribution that scales to large groups. 
This system uses two different keys, one public and one private, where it is computationally 
hard to deduce the private key from the public key. Anyone with the public key can encrypt a 
message but not decrypt it and only the person with the private key can decrypt the message. 
Mathematically the process is based on the trap-door one-way function, which are relatively 
easy to compute but significantly harder to reverse unless the secret is known. That is, given 
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x  it is easy to compute 

€ 
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€ 

f (x)  it is hard to compute 
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Public Key Infrastructure (PKI) is a technology to distribute and use asymmetrical keys. 
PKI gives trust that the public key being used truly belongs to the person or machine with 
whom/which they wish to communicate. Trust is established through the usage of certificate 
authorities (CAs) who issue X.509 certificates where a unique identity name and the public 
key of an entity are bound together through the digital signature of that CA (certificate = trust 
+ public-key). Typically, a registration authority (RA) is responsible for the identification 
and authentication of certificate subscribers before the CA issues certificates. 

3.2.  AUTHORIZATION 

Submitted requests need to be analyzed in order to make sure if an already authenticated 
user has the authorization to send control commands to a specific hardware described in the 
user’s request. For example, a user may be only authorized to make changes to the 
spectrometer’s wavelength settings, but not to the machine control pulse waveforms. In this 
case, even though a user is authenticated, it is not appropriate to accept their machine 
waveform change related requests since they are not authorized for this type control. 

3.3.  REQUEST INTEGRITY   

The security system must be able to ensure that a submitted request has not been 
modified in transit. The ability of an unknown intruder to intercept and modify a control 
command is clearly not acceptable. Encryption of the request can prevent this from occurring 
and PKI, mentioned earlier, is a standard method for assuring message integrity.  
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4.  THE CONTROL REQUEST 

The control request is the information sent by the requestor to the Gatekeeper in order to 
issue commands to hardware or make changes to physics parameters. Requests can be 
simple, such as raising the gain on a diagnostic, or can be complicated such as configuring all 
aspects of the plasma control system. Therefore, the type and size of the data submitted with 
the request can vary accordingly.  

The Gatekeeper is the front gate that interacts with users. It is the only channel of 
interaction for incoming requests from experimental sites as well as on-site generated 
requests. It should be general enough to receive and process a variety of different types of 
requests regardless of client hardware or software language.  

4.1.  REQUEST FORMATTING 

The need for processing, maintaining, and organizing incoming requests in an efficient 
and timely manner requires a standard format for the Gatekeeper request description. The 
standard should be flexible enough to describe all present requests that represent the full 
variety of control commands and parameters that can be adjusted. It also must be based on an 
extensible pattern suitable for describing control requests to future hardware equipments or 
software tools that were not in existence when the Gatekeeper is initially deployed.  

The request format standard should be independent from any specific hardware and 
programming language. Regardless of client software design and hardware features, the 
Gatekeeper should be able to receive, analyze and process the request. This is only way to 
provide a Gatekeeper which can evolve as technology progresses during the lifetime of the 
fusion experiment.  

There have been many efforts to standardize the format of fusion experimental data 
within the community. There are mainly four types of approaches to describe the data: flat 
files (ASCII or binary), relational databases, application-driven binary databases and XML 
schema-based file format. Among them, the XML schema is the preferred format for the 
Gatekeeper. The reasons are: (1) XML can be read by both humans and computers running 
on a variety of operating systems. Therefore, using XML format can guarantee that requests 
are transparent on both ends: request submitter and the Gatekeeper itself. (2) There is large 
support in both the commercial and open source world for XML. Numerous software tools 
and a rich programming infrastructure exist to edit, validate and process XML data. This 
trend is accelerating and new computer and network technologies will continue to be built 
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around XML. (3) XML schema supports introducing rules on how data is presented so that a 
variety of data structures can be easily described and standardized.  

The requests that are submitted to the Gatekeeper need to be transparent to both the 
requester and the Gatekeeper. This means that the requester must always be aware of what 
format and what kind data are acceptable for the Gatekeeper, and the Gatekeeper must 
always understand the format, meaning and data type of the requests. This requires a 
standardization process of format, description tags and grammar for Gatekeeper requests. 
XML schema supports this need and supports the description and imposing of structure 
within an XML file. By using XML schema, the request tags, syntaxes, data types, and 
structure of each request element can be clearly standardized. New request tags can be easily 
added to the standard in case it is required by future hardware.  

While XML is a preferred format to describe the Gatekeeper requests, some requests may 
contain large amount of data, and transferring it on wide area network is not very efficient. 
XML syntax is verbose and somewhat redundant, and this disadvantage becomes more 
obvious when it carries megabytes of data over the Internet. Therefore, the XML schema 
standard for Gatekeeper request also needs to include description (metadata markups and 
binary mime types) for binary data sources that are stored in a well-known data formats, such 
as MDSplus or NetCDF.  
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5.  VALIDATION 

Requests that have passed onwards by the security modules are sent onwards only after 
passing through two steps of validation: the request grammar validation and the technical 
content validation.  

5.1.  REQUEST GRAMMAR VALIDATION 

The Gatekeeper needs to validate the format of a request before sending it onward for 
technical validation. Format validation is two-fold. First, the request is verified against 
regular XML format rules to make sure it is a well-formed XML message. This is 
straightforward process. Second, the content of the XML document is verified against the 
Gatekeeper Request Schema rules. All XML content must conform to restraints expressed in 
Gatekeeper schema, such as element names, attributes, and allowable hierarchies. Metadata 
markups and mime types are also checked at this step. If the request passes the grammar 
validation it will be sent to technical content validation. If not, a rejection message along 
with the appropriate level of detail will be returned.  

5.2.  REQUEST TECHNICAL CONTENT 

Upon successfully verification of the request format, the validity of technical content of 
the request is then examined. It is possible that the validity checking of all possible requests 
could be implemented within the Gatekeeper. However, it is felt that this would lead to a 
very complicated design that would be unacceptable on numerous levels. Instead, the 
Gatekeeper’s prime responsibility is to ensure that the requests are properly formulated and 
then sent to the appropriate logic module for verification. Valid requests will then be bundled 
with experiment and state information and sent onward to the logic modules (Fig. 2). The 
design of the Gatekeeper is such that it can handle any request to the plant systems yet its 
initial implementation may be for only a subset of all possibilities.  

The logic modules are discreet entities that are responsible for determining if a request is 
valid. These modules are considered part of the Gatekeeper yet they can be authored and 
submitted (after validation) by any team member. In other words, logic modules are not 
created by a central autonomous organization but are instead authored within an organization 
that has the required expertise. The Gatekeeper will define the logic module interface 
allowing easy adoption of new modules. As a simple example, the request to raise the gain on 
a diagnostic would be passed to a logic module that would understand the physical 
limitations on gain and the state of the experiment (if personnel access has been granted to 
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diagnostic areas maybe electrical setting changes are disabled). A more complicated example 
is a new plasma pulse schedule that will need to be modeled and verified by a rather complex 
logic module. Approved requests are then transmitted onward for execution either 
automatically or via a man-in-the-loop for enhanced safety.  

 
Fig. 2.  The technical data validation model structure. 

The desire to create request validation via logic modules arises from several reasons. 
First, the expertise necessary for the required logic for a large fusion experiment is not 
typically centralized but is spread over all the partners. A modular design allows for much 
easier division of labor among the various experts. Second, verification and validation of 
logic modules is easier, as they will be smaller and self-contained. Also, a change in one 
module has little chance of affecting another module. Third, logic modules can be grouped 
under different request classifications and therefore have different levels of change control. 
For example machine safety related transactions could be treated very differently than 
requests that effect data only (e.g. change in a spectrometer’s wavelength setting). Fourth, 
logic modules can run on a variety of computers and therefore the usage of legacy codes 
becomes feasible, saving substantial time and quickly integrating the existing large body of 
knowledge into the program.  

It is possible that a number of logic modules will require the usage of an expert system. 
Some logic modules may not be able to make usage of a more generic expert system and 
those will need to create their own customized coding. But for the simpler cases, a general 
expert system will be sufficient and will greatly reduce the amount of redundant coding.  
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6.  IMPLEMENTATION OF GATEKEEPER COMPONENTS 

Some of the proposed Gatekeeper components have been tested individually to verify the 
design concepts mentioned previously while some have been deployed in production 
environments. Some testing has used the DIII-D Plasma Control System (PCS) [3] which is a 
software application used to control and monitor various aspects of tokamak plasmas 
including plasma shape, position, temperature, density, and rotation. It is one of the most 
widely used plasma control systems and is deployed worldwide at fusion experimental sites 
in the U.S. (DIII-D, NSTX, MST, MEDUSA), the U.K. (Mast), China (EAST), and South 
Korea (KSTAR).  

The U.S. FusonGrid has successfully deployed X.509 based security for authentication on 
a worldwide scale. Resource based authorization called ROAM has also been implemented 
within FusionGrid by designing a database schema that has resource permission information 
for individual users. This system lacks the concepts of roles and this would have to be added 
to satisfy Gatekeeper requirements. Details of this work have been published elsewhere [4–6] 
but the scale of present deployment is sufficient to support present and future tokamak 
experiments.  

Components of Gatekeeper’s validation requirements have been investigated with the 
PCS software since its worldwide deployment requires remote support capability. The PCS 
software is composed of two main parts, a Graphical User Interface client and the PCS host 
system. The two components interact with each other remotely utilizing TCP/IP protocol. 
However, due to stringent network security policies at many sites, the remote PCS client is 
often blocked from the local PCS host by network firewalls making remote support difficult. 
Clearly, several aspects of the designed Gatekeeper, such as user authentication and 
authorization, as well as technical content validation, will increase the security of 
communications between remote PCS request clients and the on-site PCS system. The 
Gatekeeper also acts as a proxy between PCS clients and the PCS host and transfers only 
validated messages to the experimental site. This real benefit along with the modular 
architecture of DIII-D PCS motivated us to apply the Gatekeeper design to the PCS.  

The prototype Gatekeeper software is composed of three main components. The first is a 
client that composes and sends XML-based PCS requests to the Gatekeeper. The second 
component is the Gatekeeper front-end script running on an Apache web server that is 
responsible for accepting the request. The third component is the gatekeeper back-end 
responsible for parsing and validating XML-based requests, dispatching a technical content 
validation logic module, and submitting the validated requests to the PCS server. Although 
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the prototype system currently process PCS-related requests, it includes all aspects of the 
gatekeeper pipeline and therefore extension to other requests is possible.  

In the prototype Gatekeeper, the communication between client and Gatekeeper relies on 
XML-based requests. In order to define the content and structure of the requests, an XML 
schema has been created. The initial schema design provides a means to describe the PCS 
action, such as updating the discharge shape algorithm, and a variety of data, such as 
waveform vertices. The schema not only defines the primitive data types such as, string, 
integer, float and double, but also has the capability to provide metadata about the filename 
or location of data in binary format. Figure 3 shows an XML message requesting that the 
shape algorithm be changed to the IsofluxSingleDivertor algorithm. The request’s beginning 
references the schema-definition file location required for grammar validation. Note that the 
first two action requests are hierarchical commands specific to the PCS. 

 
Fig. 3.  A sample XML message for a PCS request. 

The prototype request client has been implemented using a simple web-based XML script 
editor. It provides users with an XML message editor in which users can create Gatekeeper 
requests manually or by inserting predefined XML tags automatically with button clicks and 
menu selections. Users can save or submit the XML-based requests through a web browser.  

The front end of the Gatekeeper has been implemented as a web service using Django, a 
python language-based web framework. Django has been chosen due to its support for rapid 
web application development and “pluggable” architecture [7]. The Django-based server 
application receives an XML request from clients via HTTP POST method and performs user 
authentication and authorization.  

The XML grammar validation component checks the format and tags of the request 
against the XML schema and has been written in Python language by using XSV (XML 
Schema Validator) [8].  
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The logic module dispatcher is the last component of the Gatekeeper functionality 
pipeline. It mainly triggers one or more content validation routines based on the request 
categories. The logic modules may run sequentially or in parallel. Since the content 
validation codes will most likely be implemented with different software languages and 
techniques, a simple and flexible communication format between the dispatcher and logic 
modules is essential. Therefore, a computer-language independent dispatching and 
communication method is needed. In the prototype system, we utilized Pyro, a python-based 
Distributed Object Technology system [9] to implement remote code triggering and 
parameter transmission. The prototype dispatcher was written in Python and the logic module 
for PCS request content validation was written in C and communication is via XML 
messages. However, we expect that some logic modules can be very complicated as well as 
the data passed among them. This may require a more efficient communication framework 
such as Common Component Architecture [10] and a richer data exchange standard such as 
Fusion Simulation Markup Language [11]. As a final step, approved requests are sent onward 
to the PCS host.  

The initial prototype Gatekeeper has been completed and has successfully passed initial 
testing. These tests included sending an XML formatted client request to the DIII-D PCS to 
change the discharge shape. Note, testing was done in an off-line mode where the PCS was 
not controlling a live plasma discharge. Preparations are currently underway to test the 
system for PCS collaborations between DIII-D and EAST including actual machine control.  
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7.  CONCLUDING DISCUSSION 

Often when first considered, the concept of sending control commands across the open 
Internet to directly control sensitive hardware sounds a trifle unrealistic. However, there are 
clear examples where complex hardware has been controlled entirely by remote control (e.g. 
NASA’s Mars Exploration Rovers). The concepts outlined and demonstrated in this paper 
illustrate how such remote control of a fusion tokamak can be accomplished in a secure and 
safe way. The safety aspects employed are automatic validation algorithms that add a layer of 
safety beyond human input. The secure aspects involve the ability to send communication 
over the Internet and to guarantee the authenticity of the sender, the integrity of the message, 
and the authorization level of the sender.  

The Gatekeeper as it is conceived is a semantic approach that defines a software system 
that will be the only channel of interaction for incoming requests to the fusion experimental 
site. The role of the Gatekeeper is to validate the identification and access privilege of the 
requestor and to ensure the validity of the proposed request. The initial testing of the 
Gatekeeper components has been successful and indicates that the vision for the Gatekeeper 
is realistic. Future work will involve deploying these concepts within the PCS system at 
DIII-D as well as at select remote sites.  
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