# System Upgrades to the DIII-D Facility

A.G. Kellman for the DIII-D Team

24th Symposium on Fusion Technology Warsaw, Poland

September 11-15, 2006







#### Upgrades Performed During the Long Torus Opening (LTOA) Significantly Enhance The DIII-D Facility Capability

- Lower Divertor Modification
- Rotation of neutral beam line from co- to counter injection
- Upgraded Resistive Wall Mode Stabilization system
- Upgraded Electron Cyclotron System
- Reduced error field of Toroidal Field feedpoint
- Improved cooling of TF return bus for longer pulse operation
- Expanded Diagnostic Set
- New cooling towers, transformers for 10 sec full power operation



#### New Lower Divertor with Extended Shelf Has Been Installed for Pumping High Triangularity Double Null Discharges



• DESIGN FEATURES: 316 SS, water cooled, low gas leakage to main chamber, no bolt holes in high heat flux areas, contoured tiles



## Tile Design of New Lower Divertor Improves Toroidal Symmetry and Reduces Material Erosion

#### • New design features

- Reduced gaps between tiles
- Improved alignment of tiles
- Elimination of bolt holes in high heat flux area



 Clear reduction in toroidal asymmetries in tile heating







## New Lower Divertor Has Improved Density Control in Double Null, Advanced Tokamak Plasmas

- Measured pumping speed of lower pump is S~35,000 I/s
- Effective pumping speed is reduced ~50% by the restrictive conductance under the shelf S~18,000 I/s
- In high triangularity balanced double nulls, the lower pump 10 provides 50% additional pumping over the upper two 5 pumps.





#### Rotation of Neutral Beam Enables Both Co and Counter Injection and Provides Significant New Research Capability

#### **ENABLES**

- Physics at low rotation, more ITER relevant
- Physics of Rotation, NBCD
- RWM stability at low rotation
- NTM stabilization with modulated ECCD
- Transport barrier control
- Fast ion distribution control

#### DIAGNOSTICS

- Co plus counter viewing MSE, J(ρ) and Er with high resolution
- Co plus counter CER, improved poloidal and toroidal rotation





# Many Experiments Have Utilized 4 MW of Counter NBI for Physics Studies

#### Example:

- Applying 4 MW counter NBI in otherwise constant conditions results in:
  - Sustained toroidal rotation near zero across entire profile
  - Modest reduction in plasma confinement





## Simultaneous Feedback Control of Stored Energy and Rotation Velocity Have Been Achieved

- Feedback system adjusts mix of co and counter beams to provide required power and torque input.
- PID algorithm adjusts duty cycle of modulated neutral beams to enable smooth variation of energy and rotation





## Co/Counter Injection Has Enabled ITER Relevant (low rotation) RWM Stabilization Research

- NB rotation control has shown that threshold for RWM stabilization is at lower rotation than previous observations.
- β<sub>n</sub> sustained above no-wall stability limit at very low rotation.
- RWM Feedback System Upgrades have further enhanced research
  - High bandwidth amplifier system enlarged from 6 to 12 (10 kW each). 24 amplifiers in Fall '06.
  - Feedback delay time reduced to 50 μs. CPU cycle time reduced from 50 to 11 μs.







#### Upgraded EC System Will Provide Additional Power and Pulse Length for Enhanced Off-Axis Current Control



- Upgrade adds 3 new long pulse gyrotrons (6 MW total)
- First replacement gyrotron fully operational (1 MW, 10 s)
- Developmental "Depressed collector" 1.2 MW gyrotron installed and ready for testing



 Narrow beam sweeping in collector led to excessive heat loads and vacuum leaks in 2 earlier gyrotrons



 Broader sweeping at a higher frequency (5 Hz) reduced loads by 40% and increased expected lifetime to 50,000, 5 s pulses



## New Toroidal Field Feedpoint Significantly Reduced Magnetic Error Fields

- TF Feedpoint was rebuilt to avoid rotated beamline port.
- New connections reduce error fields associated with old TF feedpoint by a factor of 10.
  - Feed conductors changed from dipole to quadrupole
  - "Missing dipole" field added back in this new design.
- Reduced field error has had a significant favorable impact on DIII-D experiments
  - Expanded DIII-D operating space to lower density w/o locked modes
  - Reduced external torque aids in formation of low rotation plasmas







224-06/AGK/jy

### Addition of cooling plates to TF bus will double the long pulse capability of TF system





## Significant New Measurement Capability Will Be Available Following the LTOA

#### New Capability

- \*MSE ( j(ρ)) counter viewing
- CER  $(T_i, \omega)$  counter viewing
- BES (\delta n) double high-sensitivity channels
- \*SXR poloidal array
- MDS, under shelf spectral views
- MIMES (midplane)

#### **ITER Relevant Diagnostics**

- B-Stark |B| and  $B_{\theta}/B_{T}$
- Quartz microbalance
- Fast ion diagnostics
- Mirror testing

\*will be completed in Oct. '06

#### Improved Capability

- FIR Scattering
- ECE Radiometer
- Langmuir Probes-floor
- Recycling camera
- Filterscope views
- Fast framing camera
- Divertor Thomson scattering
- Reflectometer
- Interferometer



## Significant New Diagnostic Capabilities Have Been Added

#### New Capability

- \*MSE ( j(ρ)) counter viewing
- CER ( $T_i, \omega$ ) counter viewing
- BES, (δn) double high-sensitivity channels
- \*SXR poloidal array
- MDS, under shelf spectral views
- MIMES (midplane)

#### **ITER Relevant Diagnostics**

- B-Stark |B| and  $B_{\theta}/B_{T}$
- Quartz Microbalance
- Fast ion diagnostics
- Mirror testing



 Redesigned Poloidal arrays with flexible filter wheel will bring new capabilities for stability studies, including disruption characterization



## Additional Facility Upgrades will Expand Capabilities of DIII-D



138kV to 12.47kV Transformer for Auxiliary Heating

12.47kV to 4160V Transformer for MG#2 Motor





Two new cooling towers can handle expected heat loads for long pulse with auxiliary heating

> FWCD antenna fitted with double-layer Faraday shield to investigate antenna rf voltage standoff during ELMs





## Major Upgrades Installed During the LTOA Significantly Enhance DIII-D Capabilities

- Many significant upgrades were completed during the recent LTOA: New lower divertor, counter injection neutral beam, new diagnostic systems, upgraded RWM feedback system, new long pulse gyrotron, cooling towers.
- New systems enhance the ability of DIII-D to address issues critical to ITER, to pursue Advanced Tokamak studies, and to advance basic fusion research.
- These systems are now operational and have been used successfully in the recent 12 week campaign.



## ELM Suppression Using n=3 RMPs in the ITER Shape and Collisionality Enabled by New Lower Divertor



 However, ELM control lost when rotation reduced by counter injection



224-06/AGK/jy

## Significant New Measurement Capability Will Be Available Following the LTOA

#### New Capability

- \*MSE, counter viewing
- CER, counter viewing
- BES, double high-sensitivity channels
- \*SXR poloidal array
- MDS, under shelf spectral views
- MIMES (midplane)

#### **ITER Relevant Diagnostics**

- **B-STARX**  $|\mathbf{B}|$  and  $\mathbf{B}_{\theta}/\mathbf{B}_{T}$
- Quartz microbalance
- Fast ion diagnostics mirror testing
- Complete installation in October



- Stark Splitting of  $D\alpha$  provides B and  $B\theta/BT$
- Potentially easier to implement on ITER



## Pumped Double Null Allows Significantly Higher Sustained Performance than Pumped Single Null

++



- Sustained higher β operation is demostrated
- Higher confinement quality is obtained at higher β
- Both shapes yield fusion fusion gain parameters at or above the ITER steady-state target
- Density control from new divertor enables better ECCD efficiency



## NTM Control System Upgraded to Enable Gyrotron Modulation

- Detection algorithm extracts mode frequency and phase from Fourier analysis of midplane prove array
- After initial calculation period, algorithm identifies ~constant frequency, time-varying phase
- Command to dedicated cpu produces modulation signal for gyrotrons phase locked to island at ECCD location





## Significant New Measurement Capability Will Be Available Following the LTOA

#### New Capability

- \*MSE, counter viewing
- CER, counter viewing
- BES, double high-sensitivity channels
- \*SXR poloidal array
- MDS, under shelf spectral views
- MIMES (midplane)

#### **ITER Relevant Diagnostics**

- B-Stark |B| and  $B_{\theta}/B_{T}$
- Quartz microbalance
- Fast ion diagnostics
- Mirror testing





- 20 New shelf and Floor Langmuir probes
- Modular design for easy installation



## Significant New Measurement Capability Will Be Available Following the LTOA

#### New Capability

- \*MSE, counter viewing
- CER, counter viewing
- BES, double high-sensitivity channels
- \*SXR poloidal array
- MDS, under shelf spectral views
- MIMES (midplane)

#### **ITER Relevant Diagnostics**

- B-Stark |B| and  $B_{\theta}/B_{T}$
- Quartz Microbalance
- Fast ion diagnostics
- Mirror testing



- Quartz Microbalance measures material deposition (e.g. Carbon) in real time
- 2 locations installed near lower inner corner tile

