An upgrade of the magnetic diagnostic system of the DIII-D tokamak for non-axisymmetric measurements

J.D. King¹, E.J. Strait², R.L. Boivin², D. Taussig², M.G. Watkins², J.M. Hanson³, N.C. Logan⁴, C. Paz-Soldan¹, D.C. Pace², D. Shiraki³, M.J. Lanctot², R.J. La Haye², L.L. Lao², D.J. Battaglia⁴, A.C. Sontag⁵, S.R. Haskey⁶, and J.G. Bak⁷

¹Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 378300-8050, USA

²General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

³Columbia University, 116th and Broadway, New York, New York 10027, USA

⁴Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543-0451, USA

⁵Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA

⁶Plasma Research Laboratory, Research School of Physical Sciences and Engineering,

The Australia National University, Canberra, ACT 0200, Australia

⁷*Research and Development Division, National Fusion Research Center, Daejeon, Korea*

Abstract. The DIII-D tokamak magnetic diagnostic system [E.J. Strait, Rev. Sci. Instrum. 77, 023502 (2006)] has been upgraded to significantly expand the measurement of the plasma response to intrinsic and applied non-axisymmetric "3D" fields. The placement and design of 101 additional sensors allow resolution of toroidal mode numbers $1 \le n \le 3$, and poloidal wavelengths smaller than MARS-F, IPEC, and VMEC magnetohydrodynamic (MHD) model predictions. Small 3D perturbations, relative to the $(10^{-5} < \delta B / B_0 < 10^{-4})$, require sub-millimeter fabrication and equilibrium field installation tolerances. This high precision is achieved using electrical discharge machined components, and alignment techniques employing rotary laser levels and a coordinate measurement machine. A 16-bit data acquisition system is used in conjunction with analog signal-processing to recover non-axisymmetric perturbations. Co-located radial and poloidal field measurements allow up to 14.2 cm spatial resolution of poloidal structures (plasma poloidal circumference is ~ 500 cm). The function of the new system is verified by comparing the rotating tearing mode structure, measured by 31 B_P fluctuation sensors, with that measured by the upgraded B_R saddle loop sensors after the mode locks to the vessel wall. The result is a nearly identical 2/1 helical eigenstructure in both cases.

PACS Numbers: 52.70.-m, 52.70.Ds, 52.55.-s, 52.55.Fa, 52.55.Hc