Status and characterization of the lithium beam diagnostic on DIII-D

H. Stoschus,1, a) D.M. Thomas,2 B. Hudson,1 M. Watkins,2 D.F. Finkenthal,3 R.A. Moyer,4 and T.H. Osborne2

1) Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831-0117, USA
2) General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
3) Palomar College, 1140 West Mission Rd, San Marcos, California 92069-1487, USA
4) University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417, USA

(Dated: 4 June 2013)

The 30 keV lithium beam diagnostic on DIII-D is suitable to measure both the radial electron density and poloidal magnetic field profiles in the pedestal. The refurbished system features a new setup to measure the Doppler shift allowing accurate alignment of the spectral filters. The injector has been optimized to generate a stable lithium neutral beam with a current of \(I = 15 - 20 \text{ mA} \) and a diameter of \(1.9 \pm 0.1 \text{ cm} \) measured by beam imaging. The typical temporal resolution is \(\Delta t = 1 - 10 \text{ ms} \) and the radial resolution of \(\Delta R = 5 \text{ mm} \) is given by the optical setup. A new analysis technique based on fast Fourier transform avoids systematic error contributions from the digital lock-in analysis and accounts intrinsically for background light correction. Latest upgrades and a detailed characterization of the system are presented. Proof-of-principle measurements of the poloidal magnetic field with a statistical error of typically 2% show a fair agreement with the predictions modeled in EFIT within 4%.

PACS numbers: 52.70.Ds, 52.70.Kz, 52.40.Mj, 52.59.Bi, 52.55.Fa

a) stoschus@fusion.gat.com