Near Midplane Scintillator-Based Fast Ion Loss Detector on DIII-D

X. Chen¹, W.W. Heidbrink¹, R.K. Fisher², D.C. Pace², M.A. Van Zeeland², and M. García-Muñoz³

¹University of California-Irvine, Irvine, California, USA chenxi@fusion.gat.com, bill.heidbrink@uci.edu

²General Atomics, PO Box 85608, San Diego, California 92186-5608, USA fisher@fusion.gat.com, pacedc@fusion.gat.com, vanzeeland@fusion.gat.com

³Max-Planck Institut fur Plasmaphysiks, Garching, Germany

A new scintillator-based Fast-Ion Loss Detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D during the 2011 campaign. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities (\leq 500 kHz). The new FILD detector combines with the first FILD detector \sim 45° below the midplane [1] to provide additional information on the poloidal distribution of fast ion losses. The phase space sensitivity of the new detector (gyroradius $r_L \sim [2.5,8]$ cm and pitch angle $\theta_{\text{pitch}}\sim[35^\circ,85^\circ]\pm3^\circ$) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having multiple FILDs at different poloidal locations allow us to study such losses over a larger range of plasma shapes and types of loss orbits.

1. R.K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010).

This work supported in part by the US DOE under DE-FC02-04ER54698, SC-G903402, and DE-AC02-09CH11466.