Comparison of L-mode regimes with enhanced confinement by impurity seeding in JET and DIII-D

G.L. Jackson, M. Murakami,1 D.R. Baker, R. Budny,2 M. Charlet,3
M.R. deBaar,4 P. Dumortier,5 T.E. Evans, R.J. Groebner, N.C. Hawkes,3
D.L. Hillis,1 L.C. Ingesson,4 E. Joffrin,3 H.R. Koslowski,6 K.D. Lawson,3
G. Maddison,3 G.R. McKee,7 A.M. Messiah,5 P. Monier-Garbet,8
M.F.F. Nave,9 J. Ongena,5 J. Rapp,6 F. Sartori,3 G.M. Staebler, M. Stamp,3
J.D. Strachan,3 M. Tokar,6 B. Unterberg,6 M. vonHeckerman,4 M.R. Wade,1 and
contributors to the EFDA-JET work programme

DIII-D National Fusion Facility, General Atomics, P.O. Box 85608, San Diego,
California, 92186-5608 USA
1Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
2Princeton Plasma Physics Laboratory, Princeton, New Jersey
3Euratom/UKAEA Fusion Association Culham, United Kingdom
4FOM Institut voor Plasmafysica, Nieuwegein, Netherlands
5ERM, Brussels, Belgium
6IPP-Forschungszentrum, Jülich, Germany
7University of Wisconsin, Madison, Wisconsin, USA
8CEA Cadarache, France
9Associação EURATOM/IST, Lisboa, Portugal

Abstract. Impurity seeding in both the Joint European Torus (JET) and DIII-D tokamaks
has produced L-mode discharges with confinement enhancements comparable to H-mode
and a near doubling of the core ion temperature when compared to similar unseeded
discharges. Although Z_{eff} increases with the neon injection, the total neutron rate is as
high, or higher, than reference discharges and the calculated thermal neutron rate
increases dramatically in both devices. Modeling with the gyrokinetic simulation (GKS) code shows a reduction in low k turbulence growth rates with neon injection decreasing to less than the $\mathbf{E} \times \mathbf{B}$ shearing rate, consistent with stabilization of ion temperature gradient (ITG) modes in both JET and DIII-D. Reductions in ion thermal diffusivity are also observed with impurity seeding. Neoclassical m/n=3/2 tearing modes limit the duration of best performance in DIII-D with neon injection, while n=1 and n=2 magnetohydrodynamic (MHD) modes limit the performance in JET.