Magnetic Helicity is Conserved at a Tokamak Sawtooth Crash

W.W. HEIDBRINK and T.H. DANG
University of California, Irvine, California, USA

ABSTRACT

The sawtooth instability causes sudden changes in magnetic topology during combined neutral beam and fast wave heating in the DIII-D tokamak. Measurements with a Motional Stark Effect diagnostic provide accurate determination of the equilibria before and after the sawtooth reconnection events. The global magnetic helicity $\int A \cdot B \, dV$ changes $0.2\% \pm 0.9\%$ at a sawtooth crash. The local change in helical flux, χ, is roughly consistent with the Kadomtsev model within large errors. The volume in which the helical flux changes is $85\% \pm 15\%$ of the volume predicted by Kadomtsev, while the central value of χ is within 1% of the predicted value.