Exposures of Tungsten Nanostructures to Divertor Plasmas in DIII-D

D.L Rudakov^a, C.P.C. Wong^b, R.P. Doerner^a, G.M. Wright^c, T. Abrams^d, M.J. Baldwin^a, J.A. Boedo^a, A.R. Briesemeister^e, C.P. Chrobak^b, H.Y. Guo^b, E.M. Hollmann^a, A.G. McLean^f, M.E. Fenstermacher^f, C.J. Lasnier^f, A.W. Leonard^b, R.A. Moyer^a, D.C. Pace^b, D.M. Thomas^b, and J.G. Watkins^g

^{*a*} University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0417, USA ^{*b*} General Atomics, P. O. Box 85608, San Diego, CA, 92186-5608, USA

^c MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA, 02139, USA

^dOak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA

^eOak Ridge National Laboratory, Oak Ridge, TN 37830, USA

^fLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA

^g Sandia National Laboratory, P.O. Box 969, Livermore, CA, 94551-0969 USA

E-mail: rudakov@fusion.gat.com

Abstract. Tungsten nanostructures (W-fuzz) prepared in the PISCES-A linear device have been found to survive direct exposure to divertor plasmas in DIII-D. W-fuzz was exposed in the lower divertor of DIII-D using the Divertor Material Evaluation System (DiMES). Two samples were exposed in lower single null (LSN) deuterium H-mode plasmas. The first sample was exposed in three discharges terminated by Vertical Displacement Event (VDE) disruptions, and the second in two discharges near the lowered X-point. More recently, three samples were exposed near the lower outer strike point in predominantly helium H-mode LSN plasmas. In all cases, the W-fuzz survived plasma exposure with little obvious damage except in the areas where unipolar arcing occurred. Arcing is effective in W-fuzz removal, and it appears that surfaces covered with W-fuzz can be more prone to arcing than smooth W surfaces.