Validation of the linear ideal MHD model of three-dimensional tokamak equilibria*

M.J. Lanctot1, H. Reimerdes1, A.M. Garofalo2, M.S. Chu2, Y.Q. Liu3, E.J. Strait2, G.L. Jackson2, R.J. La Haye2, M. Okabayashi4, T.H. Osborne2, and M.J. Schaffer2

1Columbia University, 2960 Broadway, New York, New York 10027-1754, USA
2General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
3EURATOM/UKAEA Fusion Association, Culham, UK
4Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451, USA
†e-mail address: mjl2126@columbia.edu

Abstract. We present the first quantitative comparison of linear ideal MHD theory with external magnetic measurements of the non-axisymmetric plasma perturbation driven by external long-wavelength magnetic fields in high-temperature tokamak plasmas. The comparison yields good (within 20%) agreement for plasma pressures up to ~75% of the ideal stability limit calculated without a conducting wall. For higher plasma pressures, the ideal MHD model tends to overestimate the perturbed field indicating the increasing importance of stabilizing non-ideal effects.

*This work was supported in part by the US Department of Energy under DE-FG02-89ER53297, DE-FC02-04ER54698, and DE-AC05-00OR22725.