Validation of the linear ideal MHD model of three-dimensional tokamak equilibria*

M.J. Lanctot^{1†}, H. Reimerdes¹, A.M. Garofalo², M.S. Chu², Y.Q. Liu³, E.J. Strait², G.L. Jackson²,

R.J. La Haye², M. Okabayashi⁴, T.H. Osborne², and M.J. Schaffer²

¹Columbia University, 2960 Broadway, New York, New York 10027-1754, USA

²General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

³EURATOM/UKAEA Fusion Association, Culham, UK

⁴Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451, USA

†e-mail address: mjl2126@columbia.edu

Abstract. We present the first quantitative comparison of linear ideal MHD theory with external

magnetic measurements of the non-axisymmetric plasma perturbation driven by external long-

wavelength magnetic fields in high-temperature tokamak plasmas. The comparison yields good

(within 20%) agreement for plasma pressures up to ~75% of the ideal stability limit calculated

without a conducting wall. For higher plasma pressures, the ideal MHD model tends to

overestimate the perturbed field indicating the increasing importance of stabilizing non-ideal

effects.

*This work was supported in part by the US Department of Energy under DE-FG02-89ER53297, DE-FC02-04ER54698, and DE-AC05-00OR22725.