Localized turbulence suppression and increased flow shear near the q = 2 surface during internal transport barrier formation

M.W. Shafer,¹ G.R. McKee,¹ M.E. Austin,² K.H. Burrell,³ R.J. Fonck,¹ and D.J. Schlossberg¹

¹University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin, 53706, USA

²University of Texas-Austin, 1 University Station, Austin, Texas 78712, USA ³General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

Abstract

Broadband turbulent fluctuations in the plasma density are transiently suppressed when low-order rational q-surfaces first appear in negative central magnetic shear plasmas on the DIII-D tokamak and can lead to the formation of internal transport barriers. Increased localized flow shear is simultaneously observed and transiently exceeds the measured turbulence decorrelation rate, providing a mechanism to trigger the formation of the transport barrier. This increased flow shear and turbulence suppression propagates radially outward, following the q = 2 surface.

PACS Nos. 52.35.Ra, 52.25.Fi, 52.55.Fa, 52.30.-q, 52.55.-s