Intense geodesic acoustic-like modes driven by suprathermal ions in a tokamak plasma

R. Nazikian,¹ G.Y Fu,¹ M.E. Austin,² H.L. Berk,² R.V. Budny,¹ N,N, Gorelenkov,¹ W.W. Heidbrink,³ C.T. Holcomb,⁴ G.J. Kramer,¹ G.R. McKee,⁵ M.A. Makowski,⁴ W.M. Solomon,¹ M. Shafer,⁵ E.J. Strait,⁶ and M.A. Van Zeeland⁶

¹Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543
²University of Texas at Austin, Austin, Texas 78712
³University of California Irvine, Irvine, California 92697
⁴Lawrence Livermore National Laboratory, Livermore, California 94550
⁵University of Wisconsin-Madison, Madison, Wisconsin 53706
⁶General Atomics, San Diego, California 92186-5608

ABSTRACT

Intense axisymmetric oscillations driven by suprathermal ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak. The modes appear at nearly half the ideal Geodesic Acoustic Mode (GAM) frequency, in plasmas with comparable electron and ion temperatures and elevated magnetic safety factor $(q_{min} \ge 2)$. Strong bursting and frequency chirping are observed, concomitant with large (10-15%) drops in the neutron emission. Large electron density fluctuations $(\tilde{n}_e/n_e \ge 1.5\%)$ are observed with no detectible electron temperature fluctuations, confirming a dominant compressional contribution to the pressure perturbation as predicted by kinetic theory. The observed mode frequency is consistent with a recent theoretical prediction for the Energetic particle driven Geodesic Acoustic Mode (E-GAM).