Validation of Neoclassical Bootstrap Current Models in the Edge of an H-mode Plasma

M.R. Wade, ¹ M. Murakami, ¹ and P.A. Politzer²

¹Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA

email: wade@fusion.gat.com

²General Atomics, P.O. Box 85608, San Diego, California, 92186-5608 USA

Received (

Abstract. Analysis of the observed dynamics of the current density and pressure profile near the

plasma edge following an L-H transition in the DIII-D tokamak indicate the generation of a

large non-inductive edge current coincident with a large increase in the pressure gradient.

Detailed analysis of the equilibrium evolution following the transition indicates a large negative

voltage pulse is generated near the edge and propagates inward. Modeling has shown that these

observations are consistent with a narrow current density peak in the edge plasma induced by the

large edge pressure gradient. Comparisons with bootstrap current predictions of neoclassical

theory indicate very good quantitative agreement between the measured $E_{\scriptscriptstyle \parallel}$ evolution and the

prediction.

PACS Nos.: 52.55.-s, 52.55.Fa, 52.55.Wq, 52.25.Fi, 52.70.Ds

1