Mitigation of Tokamak Disruptions Using High-Pressure Gas Injection

D.G. Whyte,¹ T.C. Jernigan,² D.A. Humphreys,³ A.W. Hyatt,³ C.J. Lasnier,⁴ P.B. Parks,³ T.E. Evans,³ M.N. Rosenbluth,³ P.L. Taylor,³ A.G. Kellman,³ D.S. Gray,¹ and E.M. Hollmann¹

¹University of California, San Diego, California.
²Oak Ridge National Laboratory, Oak Ridge, Tennessee.
³General Atomics, San Diego, California.
⁴Lawrence Livermore National Laboratory, Livermore, California.

Abstract. High-pressure gas jet injection of neon and argon is shown to be a simple and robust method to mitigate the deleterious effects of disruptions on the DIII-D tokamak. The gas jet penetrates to the central plasma at its sonic velocity. The deposited species dissipates >95% of the plasma by radiation and substantially reduces mechanical stresses on the vessel caused by poloidal halo currents. The gas jet species charge distribution can include >50% fraction neutral species which inhibits runaway electrons. The favorable scaling of this technique to burning fusion plasmas is discussed.