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Abstract

Results are presented from three dimensional kinetic-fluid simulations of

pressure gradient driven microturbulence using a new, numerically efficient

model which includes self-consistent magnetic fluctuations and non-adiabatic

electron dynamics. A transition from electrostatic ion-drift turbulence to

Alfvénic turbulence is seen at modest values of the plasma pressure. Signif-

icant electromagnetic effects on heat conductivity are observed, including a

dramatic increase as the ideal ballooning threshold is approached, particu-

larly when electron Landau damping is included. Turbulent spectra show a

number of similarities to experimental fluctuation measurements.
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A quantitative physical understanding of turbulent transport in magnetized plasmas

is crucial to the analysis of present experiments and the design of future fusion devices.

Therefore, substantial effort has been invested in the development of increasingly realistic

numerical simulations of plasma turbulence in the hot interior of fusion relevant plasmas

[1–6]. These simulations employ analytic techniques which reduce the dimensionality of

the phase space, and which remove many of the widely disparate spatial and temporal

physical scales characteristic of magnetized, collisionless plasma [7–10]. Past simulations

have led to rapidly expanding understanding of plasma turbulence and transport, though

limitations remain. In core turbulence simulations, fluctuations have generally been assumed

to be purely electrostatic. However, magnetic fluctuations can both alter the dynamics

of primarily electrostatic instabilities such as the ion temperature gradient mode (ITG),

and introduce electromagnetic instabilities such as the kinetic ballooning mode (KBM), the

kinetic analog of the ideal ballooning mode. Furthermore, the electrostatic approximation

requires not only that the ratio of plasma to magnetic pressure (β) be small, but also that

β be far below the ideal magnetohydrodynamic (MHD) critical βc for linear instability [11].

Hence this approximation can be expected to break down both in the interior of a high β

plasma, and in any region where pressure gradients are sharp enough to push the plasma

close to ideal instability, as often occurs in core transport barriers and in the edge region.

Interesting fluid simulations of the collisional outer edge region have demonstrated that

self-consistent magnetic fluctuations are critical for prediction of edge transport [12–15].

This, along with the likelihood that an attractive fusion device would have both high in-

terior β and interior transport barriers, strongly motivates the development of a practical

model for core turbulence including magnetic fluctuations. In the hot plasma core, the col-

lisional fluid methods often used in the edge region are not valid. Furthermore, the wide

separation between the fast electron transit timescale and the slower ion drift and Alfvénic

turbulence timescales makes direct simulation via kinetic, gyrokinetic, or gyrofluid methods

challenging. Most previous core simulations have assumed electrostatic fields and adiabatic

passing electrons in order to avoid explicitly treating electron dynamics along the field.
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Electromagnetic simulations must include passing electron dynamics along the field because

electrons carry the dominant current perturbations which drive magnetic fluctuations. Here

we develop a method which employs an expansion in the electron to ion mass ratio, al-

lowing for practical simulations of core turbulence including self-consistent electromagnetic

fluctuations and non-adiabatic passing electron dynamics.

Electron equations are derived by taking velocity space moments of the drift kinetic

equation. Fluctuating quantities are taken to have length and time scales characteristic of

ion drift waves, or, equivalent in this ordering, shear Alfvén waves. A formal expansion in

the electron to ion mass ratio, keeping the lowest order terms and those that are smaller by

O(
√
me/mi), leads to the moment hierarchy,

∂n

∂t
+ vE · ∇n+B∇̃‖

u‖

B
+ iω∗φ+ iωd(φ− n− T (0) − T (1)

⊥ /2 − T (1)
‖ /2) = 0 , (1)

∂A‖

∂t
+ ∇̃‖(φ− n− T (0) − T (1)

‖ ) + (1 + ηe)iω∗A‖ = Cei . (2)

Here vE is the E × B drift velocity, B = Bb̂ is the equilibrium magnetic field, u‖ is the

electron fluid velocity along B, ∇̃‖ = b̂ · ∇ − b̂ × ∇A‖ · ∇ is the gradient along the total

magnetic field, ω∗ is the diamagnetic frequency, ωd is the combined ∇B and curvature drift

frequency, A‖ is the magnetic potential normalized to ρiB, ρi,e = vi,e/Ωi,e is the thermal

gyroradius, Ωi,e is the gyrofrequency, vi,e =
√
Ti,e/mi,e is the thermal speed, Ti,e is the

equilibrium ion or electron temperature, and ηi,e is the ratio of density to temperature scale

lengths (ηi,e = Ln/LTi,e
). Conventional normalizations are used, with equilibrium lengths

normalized to the electron density scale length (Ln), and velocities normalized to cs =
√
Te/mi. The lowest order fluctuating electron temperature T (0) is extracted via numerical

inversion of the isothermal condition along the field line, ∇̃‖(T
(0) +Te) = ∇̃‖T

(0)−ηeiω∗A‖ =

0, which arises from the dominant terms in the higher moment equations. The next order

corrections to the temperature, T
(1)
‖ and T

(1)
⊥ , can also be extracted from the full set of

electron moment equations, closed with an appropriate toroidal Landau closure such as

that in [4]. In this work, only the parallel Landau damping correction in the momentum
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equation, ∇̃‖T
(1)
‖ →

√
π/2 vi/ve|k‖|u‖ is kept. Neglecting this electron Landau damping term

(formally takingme/mi → 0) leads to a model which is isothermal along the field. Numerical

simulations are carried out both with and without this term. Electron-ion collisions are

modeled by the simple operator Cei = ν̂ei(u‖ − u‖i).

This electron model is both simple and practical for implementation in numerical simu-

lations, as it introduces neither the short timescales associated with electron free streaming

along the field, nor the small spatial scales associated with the electron gyroradius and

skin depth. Furthermore, the model represents a significant improvement over the adiabatic

passing electron response used in most past simulations. In addition to finite-β effects and

Alfvén wave dynamics, the model incorporates electron E×B, curvature and ∇B drift mo-

tion, as well as linear electron Landau damping and the dominant E×B and magnetic flutter

nonlinearities. Note that the separation of scales assumed in the derivation (ω 	 k‖ve, with

Alfvén frequencies allowed) requires that the ratio of electron to magnetic pressure (βe) far

exceed the mass ratio me/mi, a condition nearly always satisfied in the hot core of a fusion-

relevant plasma, but which can break down very near the edge. The model is intended to

describe only the untrapped electron distribution, and it treats the variation of |B| along

the field as a small perturbation (∇‖ lnB ∼
√
me/mi). Coupling to an appropriate trapped

electron model is an important direction for future work.

It will be useful to benchmark results using this electron Landau closure with recently

developed, fully kinetic electromagnetic turbulence simulations [16], which may soon be run

for the core plasma parameters we consider here. Improved versions of the electron Landau

damping model (such as including an integral convolution representation to evaluate the |k‖|

operator along perturbed field lines [17]) could eventually be tried. In the present form, the

full electron model can be viewed as an extension of the work of Kadomtsev and Pogutse

[18] to incorporate toroidal drifts, parallel ion flow, and an improved Landau damping model

which phase mixes E×B driven perturbations [10]. This electron Landau damping model

looks similar to an enhanced resistivity, with an enhancement factor of ∼102 for typical core
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tokamak parameters.

Ion dynamics are described by an electromagnetic gyrofluid model, though a direct gy-

rokinetic method could be substituted. The ion equations are derived by taking six moments

of the electromagnetic gyrokinetic equation [9,19] employing Landau closure models [4,5,10].

[We use the Landau closures of Ref. [4], and are currently investigating recent neoclassical

improvements [1] for the electromagnetic case. The simulations reported here employ the

large aspect ratio limit (r/R → 0) in which neoclassical effects vanish.] The resulting ion

equations are similar to Refs. [4,5], with the addition of magnetic induction terms and with

∇‖ → ∇̃‖ = b̂ · ∇ − b̂ × ∇A‖ · ∇ to include linear and nonlinear magnetic flutter effects.

The gyrokinetic Poisson equation [8] and Ampere’s Law [9,19] close the system.

The complete electron and ion “gyrofluid” model has been extensively benchmarked

against linear gyrokinetic theory. Figure 1 shows a comparison of linear growth rate (γ) and

frequency (ω) spectra of the ITG mode with the GS2 kinetic code [20], using the parameters

ηi = ηe = 5, R/Ln = 3, s = 1, q = 2, me/mi = 0, and τ = Ti/Te = 1, where s is the magnetic

shear and q is the safety factor. Trapped electrons, not included in the model, are neglected

in the benchmark by setting the inverse aspect ratio (r/R) to zero. The comparison is

undertaken at three values of β = 0, 0.4, 0.6%, with the model successfully reproducing the

substantial finite-β stabilization of the ITG mode which occurs below the ideal MHD β limit

(0.7% in this case).

The gyrofluid model also reproduces the correct linear behavior of the kinetic ballooning

mode (KBM), an instability in the shear Alfvén branch of the dispersion relation driven by

the pressure gradient and kinetic effects. Figure 2 shows comparisons with kinetic theory

[21], with R/Ln = 4, s = 1, q = 2, τ = 1, and kθρi = 0.5. Figure 2(a) shows a case with flat

temperature profiles (ηi = ηe = 0) where the KBM goes unstable precisely at the ideal MHD

ballooning limit. In Fig. 2(b), a finite ion temperature gradient (ηi = 2) drives the KBM

unstable below the ideal ballooning limit due to an ion drift resonance effect [22]. This effect

can lead to significant transport below the calculated ideal stability limit, and its accurate

description is critical for a complete transport model.
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Nonlinear simulations are carried out in a toroidal flux tube geometry [4] using an up-

dated, massively parallel version of the Gryffin gyrofluid code. As prior core transport

studies have been undertaken in the zero β limit, it is of great interest to explore the func-

tional dependence of transport on β. To this end, a series of six simulations is carried out

with fixed profiles (R/Ln = 3, q = 2, s = 1, ηi = ηe = 3, τ = 1) but varying β from zero to

1%, approaching the ideal ballooning limit of 1.1%. A simple s-α shifted circle equilibrium

is used in this study, with the Shafranov shift parameter (α) chosen to be consistent with

β, though the code is capable of general equilibrium geometry. At moderate β, the ITG is

the linearly dominant mode, though its growth rate decreases steadily with β. The KBM is

dominant only in the β = 1% case, though it is unstable at lower β. All simulations employ

a 128 × 96 Fourier space grid in the radial and poloidal directions and 32 real space grid

points along the field. Approximately 105 time steps of 2±1×10−3 Ln/cs have been evolved

in each case. Heat transport is found to be dominated by E×B fluctuations in all cases,

with the magnetic flutter term smaller by at least an order of magnitude.

The variation of the time averaged steady-state ion heat conductivity (χi) with β, from

simulations without electron Landau damping or collisions, is shown in Fig. 3(a). Two

simple mixing length estimates, with constants fit to the β = 0 simulation results, are also

shown. Here the nonlinear behavior of the system can be qualitatively understood in terms

of linear physics. For β/βc
<∼ 1/2, the conductivity decreases with β due to the finite β

stabilization of the ITG mode. As β approaches βc, the KBM is becoming unstable and

driving an increase in χi.

The addition of electron Landau damping (using the electron/deuterium mass ratio)

breaks the isothermal electron constraint, and changes the nonlinear behavior of the system

dramatically. [A small amount of collisions, (ν̂ei = 5 × 10−5), was also included in these

runs but has little effect.] The linear growth rate spectrum, and hence simple mixing length

estimates of χi, change only modestly. Yet the steady state χi increases by a factor of five

at β = 0.8% and by a factor of eight at β = 1.0%, as illustrated in Fig. 3(b). In finite-β

simulations with electron Landau damping, significant particle and electron heat transport
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are also measured. The diffusivity and electron heat conductivity scale similarly to χi but

are reduced in magnitude by a factor of 3-4.

This large increase in χi as the ideal β limit is approached corresponds to a qualitative

change in the turbulent dynamics, illustrated by Fig. 4. The eddy turnover time decreases

by roughly a factor of four, comparable to the linear difference in frequency between between

the ITG and KBM at these parameters, and short-lived radially extended streamers appear.

The transition from predominantly electrostatic ion-drift wave turbulence to Alfvénic

turbulence can be quantified by the ratio of the mean square parallel electric field (E‖ =

−∇‖φ− ∂A‖/∂t) to its electrostatic constituent, ∇‖φ, shown in Fig. 5. In the usual model

of ion drift wave turbulence, this ratio is taken to be one, and magnetic fluctuations are

neglected. In contrast, in “ideal” Alfvénic turbulence, magnetic induction exactly balances

∇‖φ and the ratio is zero. Figure 5 demonstrates that the electrostatic approximation can

break down at modest values of β/βc ∼ 1/2, and that the turbulence becomes predominantly

Alfvénic as the ideal ballooning limit is approached. This transition is hindered somewhat

by the presence of electron dissipation, which allows force balance to be achieved at large

E‖, even when ∇‖ne is small.

Steady state density and temperature fluctuation spectra have been extracted from the

simulations and show a number of similarities to fluctuation measurements [23,24]. The

radial spectra peak at zero, while the poloidal spectra peak at poloidal wave number kθ =

0.20 ± 0.05 ρ−1
s , nearly independent of β. The width of the peaks decreases significantly

with β, with the FWHM dropping roughly a factor of three as β increases from 0 to 1%.

The simulations produce ion temperature spectra nearly identical in shape to the density

fluctuation spectra, with a ratio of the relative temperature fluctuations to the relative

density fluctuations of 2 ± 0.5, largely independent of parameters, similar to the measured

behavior of carbon fluctuations [24]. Further investigation using the detailed geometry and

parameters from the experiment is needed to confirm this agreement.

An important limitation of electrostatic simulations has been their inability to predict

the dramatic increase in heat conductivity often seen in the outer ∼30% of tokamak plasmas.
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The increase in χi at moderate α = −Rq2β′ ∼ β/βc seen in electromagnetic simulations is

a candidate to explain the observed behavior, because while β itself decreases in the outer

regions of tokamak plasmas, α often increases due to sharp gradients and increasing q.

A preliminary study using parameters from a TFTR L-mode shot has indeed found that

electromagnetic simulations predict much larger fluxes than electrostatic simulations of the

outer region, bringing the simulation results into better agreement with measured fluxes.

There are also nonlinear instability mechanisms that can be important for edge parameters

(Refs. [13,12] and references therein).

In summary, a new method has been developed for the efficient simulation of plasma

turbulence, including magnetic fluctuations and non-adiabatic passing electron dynamics.

The method has been implemented in realistic three dimensional nonlinear simulations,

which exhibit fluctuation spectra with several characteristics in common with measurements

[23,24]. A transition from nearly electrostatic ion-drift turbulence to Alfvénic turbulence is

observed to occur as β is increased above a threshold value of roughly half the ideal critical

βc. The scaling of heat transport with β has been explored, and ion heat conductivity is

found to decrease with β far from the ideal ballooning limit, but to increase with β as the

ballooning limit is approached. In the presence of electron Landau damping, this increase

in heat transport with beta can be dramatic and can occur well below the ideal ballooning

threshold, perhaps helping to explain the high heat conductivity measured in the outer

region of many tokamak experiments.
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Fig. 1.  Linear growth rate (positive) and frequency (negative) spectra of the toroidal ITG
mode, for β = 0, β = 0.4%, and β = 0.6%. The gyrofluid (GF) result is compared with
results from the GS2 linear gyrokinetic code.
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