Internal Kink Instability during Off-Axis Electron Cyclotron Current Drive in the DIII–D Tokamak

K.L. Wong,¹ M.S. Chu,² T.C. Luce,² C.C. Petty,² P.A. Politzer,² R. Prater,² L. Chen,³ R.W. Harvey,⁴ M.E. Austin,⁵ L.C. Johnson,¹ R.J. La Haye,² and R.T. Snider²

¹Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543
²General Atomics, P.O.Box 85608, San Diego, CA 92186
³Department of Physics, University of California, Irvine, California
⁴CompX, Del Mar, California
⁵University of Texas, Austin, Texas

(Received)

Experimental evidence is reported of an internal kink instability possibly driven by a new mechanism: barely trapped suprathermal electrons produced by off-axis ECH on the DIII–D tokamak. It occurs in plasmas with an evolving safety factor profile q(r) when q_{min} approaches 1. This instability is most active when ECCD is applied on the high field side of the flux surface. It has a bursting behavior with poloidal/toroidal mode number = m/n = 1/1. In positive magnetic shear plasmas, this mode becomes the fishbone instability. This observation can be qualitatively explained by the drift reversal of the barely trapped suprathermal electrons.

PACS No. 52.35.Py, 52.50.Gj, 52.65.Cc, 52.35.Hr