Electric Field-Induced Plasma Convection in Tokamak Divertors

J.A. Boedo,¹ M.J. Schaffer, R. Maingi,² C.J. Lasnier,³ J.G. Watkins⁴ *General Atomics, P.O. Box 85608, San Diego, California 92186-5608*

¹University of California – San Diego, San Diego, California. ²Oak Ridge National Laboratory, Oak Ridge, Tennessee. ³Lawrence Livermore National Laboratory, Livermore, California. ⁴Sandia National Laboratories, Albuquerque, New Mexico.

(Received .

Measurements of the electric fields in the DIII-D tokamak divertor region are quantitatively consistent with recent computational modeling establishing that $\mathbf{E} \times \mathbf{B}_T$ circulation is the main cause of changes in divertor plasmas with the direction of \mathbf{B}_{T} . Comprehensive two-dimensional measurements of plasma potential in the DIII-D tokamak divertor region are reported for the first time. The electric field **E** and the resulting $\mathbf{E} \times \mathbf{B}_T$ $/B^2$ drift particle flux are calculated (\mathbf{B}_T is toroidal magnetic field) for standard (anti-parallel to the plasma current I_P) and reversed B_T direction and for low (L) and high (H) confinement modes. Perpendicular field strengths of up to $E \sim 5 \text{ kV/m}$ are observed at the separatrix between the divertor private region and the scrape-off layer (SOL). The $\mathbf{E} \times \mathbf{B}_T$ drift, which reverses with reversal of \mathbf{B}_{T} , creates a poloidal circulation pattern in the divertor that convects about 10^{22} ion/s, i.e. about 30%–40% of the total ion flow to a divertor target. The circulation strongly couples the various regions of the divertor and SOL and fuels the X-point region. An outward shift of the profiles is seen in reversed \mathbf{B}_T .

PACS Nos. <u>52.55.Fa</u>, <u>52.30.-q</u>, <u>52.25.Fi</u>