Reduction in Neutral Beam Driven Current in a Tokamak by Tearing Modes

C.B. Forest,¹ J.R. Ferron,¹ T. Gianakon,² R.W. Harvey,³ W.W. Heidbrink,⁴

A.W. Hyatt,¹ R.J. La Haye,¹ M. Murakami,⁵* P.A. Politzer,¹ and H.E. St. John¹

¹General Atomics, San Diego, California 92186-5608
²University of Wisconsin-Madison, Madison, Wisconsin 53706
³CompX, Del Mar, California 92014
⁴University of California, Irvine, California 92697
⁵Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

Abstract

Profiles of noninductive current driven by neutral beam injection into a tokamak have been measured and compared with theory. The driven current can be less than the theoretical prediction (by up to 80 percent) in the presence of islands driven by tearing modes. The possibility of increasing the plasma current noninductively using neutral beams is severely limited by this effect.

^{*}Present Address: General Atomics, San Diego, California 92186-5608.