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EQUATIONS OF NON-IDEAL MAGNETOHYDRODYNAMICS 

S.K. Wong and V.S. Chan 

General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA 

Abstract.  In existing derivations1-4 of fluid equations for strongly magnetized collisional 
plasmas from kinetic equations, the component of mass velocity perpendicular to the magnetic 
field is treated as an independent fluid variable with its own equation for temporal variation. This 
is not in strict accord with the Chapman-Enskog method that forms the basis of these derivations, 
as the plasma does not relax to a state with arbitrary perpendicular mass velocity in the rapid 
time scale that includes gyro-motions together with Coulomb collisions. It is shown that this 
difficulty can be circumvented if the equations for the plasma variables are coupled to the 
equations for the electromagnetic field, in which displacement current is neglected and quasi-
neutrality is assumed. In the hydrodynamic time scale, ideal magnetohydrodynamic equations 
are obtained. In the next order, the equations include transport fluxes. Although in the latter case, 
the resulting equations do not differ substantially from those in existing works, they are 
expressed in forms that more clearly exhibit dynamical consistency. Thus, the generalized Ohm’s 
law is in a form that emphasizes its role for eliminating the electric field from Faraday’s law. The 
electric current density in the 


j ×

B  term of the perpendicular momentum equation is related to 

the magnetic field through Ampere’s law, obviating its determination from the second order 
kinetic equation, which is cumbersome to solve. The heat flux depends on electric current 
density similar to thermoelectric effect for metals and semiconductors. In addition to simple 
plasmas, where comparison with existing works is made, the transport fluxes are also obtained 
for plasmas with two ion species. The limit of small mass velocity leads to classical transport, 
wherein the elimination of the electric field from the 


E ×

B  motion causes the local particle flux 

to depend on boundary conditions.  

I. Introduction And Outline 
The derivation of fluid equations from kinetic theory of plasmas in a magnetic field has a 

long history. The early part of the history can be found in the work of Robinson and Bernstein1. 
Most of the work cited there apply strictly to plasmas with short collisional mean-free-path, for 
which the approach of Chapman and Enskog2,3 provides a rigorous justification of the closure of 
the equations in terms of a few fluid variables. The equations of Braginskii4 for two-temperature 
plasmas can be considered a culmination of this line of work, and have since been reproduced in 
books.5,6,7. These equations are applicable to a wide variety of plasmas such as industrial plasmas 
with low temperature, laser plasmas with high density, and space plasmas with large spatial 
scale.  

The existing derivations share a common puzzling feature regarding the fluid velocities 
perpendicular to the magnetic field. In carrying out the expansion of the distribution function 
pursuant to the Chapman-Enskog method, the ratio of gyro-radius over scale length is considered 
to be of the same order as the collisional mean-free-path over scale length, both being adopted as 
the unique ordering parameter. As a result, the relaxation to equilibrium in the time scales of 
gyro-motion and collisions yields Maxwellian distributions with arbitrary parallel (to the 
magnetic field) mass velocity but no perpendicular mass velocity. A non-zero perpendicular 
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mass velocity component 

V⊥ is restored by taking the combination 


E +

V⊥ ×


B c  to be small (of 

the first order), and carrying out the expansion with the distribution function expressed in the 
variable !υ =


υ −

V .  A result of the derivation is the perpendicular momentum equation [Eq.(4)] 

giving the time rate of change of 

V⊥ . The implication that 


V⊥  is an independent variable 

characterizing the state of the plasma is at odds with the spirit of the Chapman-Enskog method 
originally developed for neutral gases. The method identifies gas species densities, temperature, 
and mass flow as state variables because (1) they are parameters occurring in the leading order 
distribution functions (Maxwellians), (2) they possess arbitrariness in view of the conservation 
laws of collisions, which is removed by requiring the absence of higher order corrections to these 
parameters, and (3) their time variations are determined from the solvability conditions for the 
first order distribution functions arising from the same conservation laws. Since these features do 
not strictly apply to 


V⊥ , its treatment should be quite distinct from those for the other state 

variables. The main contribution of the present work is to elucidate how this can be done with a 
reasonable degree of rigor. 

The validity of 

E +

V⊥ ×


B c  remaining small would be in doubt if the electric field is 

prescribed, or if the displacement current is kept, as it cannot be guaranteed at face value by the 
independent time variations of 


V⊥  and the electric field.  We recognize that this objection can be 

removed if the goal is to produce a dynamically consistent set of equations for both the plasma 
fluid variables and the electromagnetic field, provided that the displacement current is neglected 
and quasi-neutrality is assumed. Without such stipulation, as is the case for the cited works, the 
objection would remain. A crucial step taken in the present approach is to subject both the 
electric field and the perpendicular mass flow to expansions in the ordering parameter so that 
E =

E −1( ) +


E 0( ) + , 


V⊥ =


V⊥

0( ) +

V⊥

1( ) +  . It is found that quasi-steady state in the time scale of 
collisions and gyromotions occurs if 

E −1( ) +

1
c

V⊥

0( ) ×

B = 0  

In the time scale slower by one order, an expression for 

E 0( ) +


V⊥

1( ) ×

B c  can be found in 

terms of fluid variables that include the first order current density 

j 1( ) .  The smallness of 

E +

V⊥ ×


B c  is thus formally guaranteed. 

With the neglect of the displacement current, there is no equation for the time variation of the 
electric field, which must therefore be eliminated in terms of other variables. The expressions for 
E +

V⊥ ×


B c  in the two leading orders serve this purpose. In existing works, the first-order 

current density is calculated from the first-order distribution function, resulting in a relation of 
the form 

j 1( ) = L


E 0( ),

E 0( )

⊥
+

V 1( )

⊥ ×

B c,∇na,∇T{ }  

known as the generalized Ohm’s law, where na is the density of plasma species labeled a , T  is 
the common temperature, and L  denotes a linear function. Solving the relation for 


E 0( ) and 
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
E⊥

0( ) +

V⊥

1( ) ×

B c and combining with the equation 


E −1( ) +


V⊥

0( ) ×

B c = 0  leads to an equation of the 

form.  

E +

V
c
×

B = L−1


j 1( ),∇na,∇T{ }  

with another linear function formally written as L−1 .  The above equation can be used to 
eliminate 


E from Faraday’s law and other fluid equations. But the results contain the variables 

j 1( ) and 

V⊥ . 

The first order current density 

j 1( )  can be eliminated in favor of the magnetic field, 

considered an independent variable, if the replacement 

j 1( ) = c∇×


B 4π  

is made to satisfy Ampere’s law. The perpendicular mass flow 

V⊥  can be elevated to be an 

independent plasma parameter with time variation given by the perpendicular momentum 
equation. It is important to note that the


j ×

B  term in this equation requires the second order 

current density 

j 2( ) if the momentum equation is to be accurate in the transport time scale. Also 

there is no other equation for 

j 2( ) from the plasma dynamics, because, even if we were to solve 

for the second order distribution functions-which is not necessary-we would have found 

j 2( ) to 

satisfy the first order perpendicular momentum equation.  Again we can appeal to Ampere’s law 
to eliminate 


j 2( ) in favor of the magnetic field, provided we sum the perpendicular momentum 

equations in the two leading order time scales, and make the replacement 

j 1( ) +


j 2( ) = c∇×


B 4π  

in the 

j ×

B  term.  It is the possibility of making this replacement that allows the determination 

of the time variation of 

V⊥ , which is in a manner different than those for densities, temperature, 

and parallel mass flow.  Failure to acknowledge this consideration in the cited works is a source 
of confusion. 

Replacing 

j 1( ) by 


j 1( ) +


j 2( )  in the generalized Ohm’s law does not impact its accuracy. The 

price paid is just the incursion of an extraneous order. However, the generalized Ohm’s law 
should not be used to determine the current density in terms of the electric field for substitution 
in the 


j ×

B  term of the momentum equation. This point is easily lost sight of in existing works, 

which do not emphasize that the role of the generalized Ohm’s law is to eliminate the electric 
field. Indeed, the point is completely lost when the generalized Ohm’s law is defined as one that 
gives the time rate of change of the current density, as in Ref. (9). 

In this paper, we present a derivation of the fluid equations for single-temperature plasmas 
following the approach outlined, which gives rise to a consistent set of dynamical equations with 
the densities of plasma species, the common temperature, the mass velocity, and the magnetic 
field as independent variables. The current density is obtained from the curl of the magnetic 
field; the electric field is eliminated from Faraday’s law and other equations using the 
generalized Ohm’s law. In the hydrodynamic time scale, the equations of ideal 
magnetohydrodynamics are obtained. Including the time scale in the next order, the equations 
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describe plasma transport. The heat flux and viscous stress tensors are evaluated for simple 
plasmas, in the subsidiary limit when the ratio of gyroradius to collisional mean free path is 
small. They are equivalent to those in Ref.(4), although in the present work, the heat flux is 
expressed in a form that depends on the current density, similar to the Peltier effect for metals 
and semiconductors. Also, we include corrections of the order of the square root of electron-ion 
mass ratio in the ion perpendicular thermal conductivity and parallel viscosity, which are of the 
same order of magnitude as the electron contributions to the same transport coefficients. The 
generalized Ohm’s law obtained for simple plasmas can also be retrieved from various equations 
of Ref.(4). The transport fluxes and generalized Ohm’s law are also evaluated for plasmas with 
two ion species, which has applications to D-T plasmas and plasmas with impurity ions, and 
which exhibits features such as inter-species diffusion that do not occur for simple plasmas. 

The term classical transport8 customarily refers to the situation where the mass velocity is 
much less than the ion thermal velocity. It can be deduced from the fluid equations of the present 
theory by allowing the mass velocity to become first-order small.  Since in this limit the pressure 
gradient is balanced by the 


j ×

B  force, there is no equation for the time variation of the 

perpendicular mass velocity. As a result, the electric field cannot be eliminated using the 
generalized Ohm’s law, because it involves the perpendicular velocity. We treat the constraint of 
force balance at all times by requiring the time derivative of the force balance equation to be 
satisfied. The resulting equation determines an electric field that depends on boundary 
conditions, that is imparted to the local particle flux. 

We organize the paper as follows. The next section presents the exact moment equations and 
the equations for the electromagnetic field, which remain valid in all orders of time scale. In 
Section 3, the formal expansion procedure is carried out to the zeroth order, which is taken to be 
the time scale of hydrodynamics. In Section 4, the expansion procedure is continued to the first 
order, producing the linearized kinetic equation and expressions for the transport fluxes. The 
procedure is specialized to simple plasmas in Section 5, solving the resulting equations recovers 
most results of Ref. (4). Section 6 deals with plasmas with two ion species, presenting the 
appropriate forms of the transport fluxes and Ohm’s law. Section 7 discusses the classical 
transport limit when the mass velocity is considered to be small. It is followed by a brief 
concluding section. Appendix A provides the conditions for the justifications for quasi-neutrality 
and the neglect of displacement current. Appendix B gives the details for calculating the 
transport fluxes using expansions in Sonine polynomials, and presents sample results of the 
calculations. 

II. The Moment Equations 
We begin with the kinetic equation for a multi-component plasma. For the charged particle 

species labeled a , of mass ma  and charge ea , in an electric field 

E  and magnetic field 


B , the 

distribution function fa  satisfies the equation 
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∂fa
∂t

+

υ ⋅∇fa +

ea
ma


E +

υ
c
×

B

%

&
'

(

)
*⋅
∂fa
∂

υ
= Cab fa, fb( )

b
∑  (1) 

where Cab is the Fokker-Planck operator for Coulomb collisions. In the approach of Chapman 
and Enskog, the fluid equations are obtained in different stages or frequency scales through 
expansion of the distribution function, in the ratio of collisional mean-free-path to scale length 
for neutral gases, and also in the ratio of gyroradius to scale length for strongly magnetized 
plasmas. They are the conditions of solvability of the kinetic equations in the different stages. A 
convenient way to obtain these fluid equations is to use the exact moment equations of Eq.(1), 
and evaluate the moments using the approximate distribution functions in the different stages as 
the solvability conditions are called for. The moment equations follow from the conservation 
laws of the collisions, and they are the four equations below: 

dρ
dt

+ ρ∇⋅

V = 0    , (2) 

dna
dt

+ na∇⋅

V +∇⋅na

ua = 0    , (3) 

ρ
d

V
dt

+∇p+∇⋅ π − 1
c

j ×

B = 0    , (4) 

3
2
n dT
dt

+ p∇⋅

V + π :∇


V − 3

2
T∇⋅ na

ua
a
∑ +∇⋅

q −

j ⋅

E +

V
c
×

B

&

'
(

)

*
+= 0    . (5) 

Combining Eq. (3) and Eq. (5) gives the following somewhat simpler equation than Eq. (5):  

∂
∂t

3
2
nT

"

#
$

%

&
'+∇⋅

3
2
nT

V

"

#
$

%

&
'+ p∇⋅


V + π :∇


V +∇⋅ q −


j ⋅

E +

V
c
×

B

"

#
$

%

&
'= 0  (6) 

In these equations, na  is the species density, n = na
a
∑ , ρa =mana , ρ = ρa

a
∑ , 


Va  is the species 

velocity, 

V  is the mass velocity given by ρ


V = ρa


Va

a
∑ , d dt = ∂ ∂t +


V ⋅∇ , ua =


Va −

V , 

j = eana

Va

a
∑ , T  is the common temperature defined by  

  

€ 

3
2

na
a
∑ T = d 3υ1

2
ma
 
υ −
 
V ( )∫

a
∑

2
fa  (7) 

pa = naT , p = pa
a
∑ , qa  is the species heat flux (relative to the mass velocity) defined by 
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€ 

 q a = d 3υ1
2∫ ma

 
υ −
 
V ( )2  υ −

 
V ( ) fa  (8) 

q = qa
a
∑ , π a  is the species viscous stress tensor defined by 

  

€ 

 
π a = d 3υma

 
υ −
 
V ( )  υ −

 
V ( )−13

 
υ −
 
V ( )2
 
I 

% 
& ' 

( 
) * 

fa∫  (9) 

and π = 
π a

a
∑ . Also, the quasi-neutrality condition eana

a
∑ = 0  has been assumed. Using these 

equations, the entropy density as defined by s = sa
a
∑ = nan T 3 2 na( )

a
∑  can be shown to satisfy 

the equation 

  

€ 

ds
dt

+s∇⋅
 

V +∇⋅ ss
 u a +

1
T
 q a −

5
2

pa
 u a

% 
& 
' 

( 
) 
* 

+ 

, - 
. 

/ 0 a
∑ =θ    , (10) 

where the entropy density production rate θ  is given from 

  

€ 

Tθ=
 
j ⋅
 
E +
 

V 
c
×
 
B 

% 

& 
' 

( 

) 
* −

 u a ⋅∇pa +
 q a −

5
2

pa
 u a

% 
& 
' 

( 
) 
* ⋅∇nT +

 
π a :∇

 
V 

. 

/ 0 
1 

2 3 a
∑    . (11) 

For the electromagnetic field, neglecting the displacement current, Ampere’s law and 
Faraday’s law apply: 

  

€ 

∇×
 
B = 4π

c
 
j  (12) 

  

€ 

∂
 
B 
∂t

=−c∇×
 
E  (13) 

The need to impose quasi-neutrality and to neglect displacement current arises from the 
assumed restriction to low frequency nonrelativistic motions and scale length much longer than 
Debye length. Details are given in Appendix A. A closed description of the plasma dynamics 
using only fluid variables will be achieved if the independent variables are identified and all 
moments are expressed in terms of these variables.  The form of the moment equations suggests 
that the plasma variables can be taken to be the species densities, the mass velocity, and the 
common temperature. The magnetic field is also an independent variable. The electric current 
density is just given by its curl. However, with the neglect of displacement current, there is no 
equation for the time evolution for the electric field, which therefore should be considered as a 
dependent variable.  The quantities to be expressed in terms of the variables na,


V,T and 


B  are 

then ua,
q, π  and 


E .  These tasks will be accomplished by an expansion of the distribution 

function.  
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III. Ideal MHD: Hydrodynamic Stage 
To implement the Chapman-Enskog approach starting from Eq. (1), we consider both 

collisional mean-free-path λ  and gyro-radius ρB  to be small compared to the scale length  , 
and introduce the ordering parameter δ  so that  

ρB  ~ λ  ~ δ .  (14) 

The distribution function is expanded in this parameter: 
fa = fa0 + fa1 + (15) 

In contrast to existing works, the electric field is also expanded: 

E =

E −1( ) +


E 0( ) +  (16) 

with E −1( ) = 0 . The leading terms of the perpendicular and parallel components of the electric 
field are assigned the orderings 

  

€ 

cE⊥
(−1)

Bυ 
~δ 0

eE ||
( 0 )
T

~δ 0    , (17) 

where υ  is the thermal velocity of a typical plasma species. Together, they imply E 0( ) E⊥
−1( ) ~ δ . 

The ordering of E⊥
−1( )  ensures that the perpendicular mass velocity is of the order of the thermal 

velocity, thus distinguishing the present work from cases commonly referred to as classical 
transport8, in which the ratio of mass velocity to thermal velocity is of the order of gyroradius 
over scale length. It is shown in Section 7 that classical transport can be recovered from the 
present approach.  

Introducing the hydrodynamic frequency scale ω0 ~ υ  , the time derivative in Eq. (1) is 
formally expanded as  

∂
∂t
=

∂

∂t 0( )
+

∂

∂t 1( )
+    , (18) 

with t n( )  corresponding to the frequency scale δ nω0 .  
Assuming that quasi-steady state is reached in the frequency scale δ−1ω0 , the kinetic equation 

in this scale is  
ea
ma


E −1( ) +


υ
c
×

B

#

$
%

&

'
(⋅
∂fa0
∂

υ
= Cab fa0, fb0( )

b
∑    . (19) 
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It has the general solution 

fa0 = na
ma

2πT
!

"
#

$

%
&
3 2

exp −ma

υ −

V 0( )( )

2
2T(

)*
+
,-
 (20) 

in which  

V 0( ) =V b̂+


V⊥

0( )  (21) 


V⊥

0( ) = c

E −1( ) × b̂

B
 (22) 

with b̂ =

B B , and na,T,V  are arbitrary functions of space and time.  No superscript is attached 

to V  because, unlike 

V 0( )

⊥ , it is an independent variable. The variables na,V  can be taken to be 
the species density and parallel mass velocity respectively. 


V⊥

0( )  is the zeroth-order perpendicular 
mass velocity. T  is the temperature correct to the first order. It is not to all orders in view of the 
appearance of 


V 0( )  in fa0  rather than the exact mass velocity. But we shall not need to redefine 

temperature to include a correction to T  as the fluid equations that will be obtained are accurate 
only through the first order frequency scale δω0 . Note that the perpendicular mass velocity is not 
an independent variable at this stage. In this order, all species move with the same velocity, so 
that the current density 


j 0( )  is zero. 

The time variation of the independent variables na,T,V  in the zeroth-order frequency scale 
ω0  are obtained from the kinetic equation in the same order, which is 

  

€ 

∂fa 0

∂t 0( )
+
 
υ ⋅∇fa 0+

ea
ma

 
E 0( ) ⋅

∂fa 0
∂
 
υ 

+
ea
ma

 
E −1( )+

 
υ 
c
×
 
B 

( 
) 
* 

+ 
, 
- ⋅
∂fa1
∂
 
υ 

= [Cab fa1, fb0( )
b
∑ +Cab fa 0 , fb1( )] (23) 

It proves convenient for discussions in later sections to transform to the variable !υ  defined 
by 

!υ =

υ −

V 0( )

   . (24) 

The resulting equation is  

  

€ 

dfa 0
dt 0( )

+
 
" υ ⋅∇fa0+

ea

ma

 
E 0( ) −

d
 

V 0( )

dt 0( )

' 

( 
) ) 

* 

+ 
, , ⋅
∂ fa 0
∂
 
" υ 
−
 
" υ ⋅∇
 

V 0( )( )⋅∂ fa 0
∂
 
" υ 

+
ea

ma c
 
" υ ×
 
B ⋅∂ fa1
∂
 
" υ 

=∑
b

Cab( fa1, fb0) +Cab ( fa 0, fb1)[ ](25) 

where d dt 0( ) = ∂ ∂t 0( ) +

V 0( ) ⋅∇ , and Cab  takes the same form in the !υ  as in the υ  variables 

because of Galilean invariance. 
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As an equation for fa1 , it needs to satisfy the solvability conditions obtained by performing on it 

the operations d3 !υ , d3 !υ ma !υ∫
a
∑∫ , d3 !υ ma !υ 2 2∫

a
∑ , which annihilate the terms involving fa1  

on both sides of the equation.  The following equations result: 
dna
dt 0( )

+ na∇⋅

V 0( ) = 0  (26) 

ρb̂ ⋅ d

V 0( )

dt 0( )
+ b̂ ⋅∇p = 0  (27) 

3
2
n dT
dt 0( )

+ p∇⋅

V 0( ) = 0    . (28) 

If the electric and magnetic fields are considered to be external, or if the field equations are 
ignored, as in many existing works, these equations would, together with Eq. (22) for the 
perpendicular mass velocity, provide a closed fluid description of the plasma. Otherwise, 
Ampere and Faraday’s laws must be included. Using the estimate j⊥

1( ) = ea d3 "υ

"υ⊥∫

s
∑ fa1 ~ δneυ  

for the first-order current density and Eq. (14), we find  
4π j⊥

1( )

c∇×B
~ 4πneυρB

cB
~ 8π p
B2

   . (29) 

It is then necessary to use 

j (1)  in Ampere’s law if the plasma beta is not a small parameter, so 

that  

∇×

B = 4π

c

j 1( )    . (30) 

It turns out to be unnecessary to solve for fa1  in order to determine 

j (1) , because it can be found 

by performing the operation d3 !υ ma∫
a
∑ 

!υ  on Eq. (25), which yields the momentum equation 

ρ
d

V 0( )

dt 0( )
+∇p− 1

c

j 1( ) ×


B = 0    . (31) 

This is an equation for 

j⊥
1( )  in so far as 


V⊥

0( )  and its time derivative are determined by Eq. (22).  
Faraday’s law takes the form 
∂

B

∂t 0( )
= −c∇×


E −1( )    , (32) 
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where the implied variation in the frequency scale ω0  is justified when we rewrite Eq. (22) as  

E −1( ) +


V 0( )

c
×B = 0  (33) 

and use it to eliminate 

E −1( )  from Eq. (32). (Recall that E −1( ) = 0 .)   

This elimination is necessary because there is no dynamic equation for the electric field when 
displacement current is neglected.  But it means that 


V⊥

0( )  can no longer be determined from 
Eq. (22). Instead, it can be considered an independent variable along with the densities, 
temperature, parallel mass velocity, and magnetic field. Its time variation is now given by 
Eq. (31), which is no longer considered to be an equation for 


j⊥
1( ) .  Rather, 


j⊥
1( )  is defined from 

Eq. (30) in terms of 

B . The parallel component j 1( )  plays no role in the dynamics. Dropping the 

superscripts in Eqs. (26), (28), (30–32) and (33), it is seen that they are the equations of ideal 
magnetohydrodynamics.  

IV. Transport Stage 
To obtain the fluid equations accurate to the first order frequency scale δω0 , it is necessary 

to determine fa1 , which satisfies Eq. (25). Using Eqs. (26–28) to replace the time derivatives, 
and for convenience introducing !fa1  through 

fa1 =
ma

T

!υ ⋅

V 1( ) fa0 + !fa1  (34) 

so as to remove the first order mass velocity, Eq. (25) can be conveniently decomposed into four 
equations so that !fa1  is the sum of their solutions. The four consist of two for the gyro-phase 
averaged part describing parallel transport: 

!υ

pa
⋅ ∇pa − naea


E 0( ) −

ρa
ρ
∇p+ ma !υ 2

2T
−
5
2

%

&
'

(

)
*na∇T

+

,
-

.

/
0 fa0 = [Cab !fa1, fb0( )+

b
∑ Cab fa0, !fb1( )]  (35) 

ma

T

!υ

!υ −
1
3

!υ 2

I :∇


V 0( ) fa0 = [Cab !fa1, fb0( )+

b
∑ Cab fa0, !fb1( )]  (36) 

where the brackets  denote gyro-phase average, and two for the gyro-phase dependent part 
describing perpendicular transport: 

!υ⊥

pa
⋅ ∇pa − naea


!E⊥
0( ) −

ρa
ρ
(∇p−


j 1( ) ×


B)+ ma !υ 2

2T
−
5
2

'

(
)

*

+
,na∇T

-

.
/

0

1
2 fa0 +

ea
mac

!

υ ×

B ⋅ ∂ !fa1

∂

!υ

= [Cab !fa1, fb0( )+
b
∑ Cab fa0, !fb1( )]

 (37) 
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ma

T

!υ

!υ −

!υ

!υ#$ %&⋅∇


V 0( ) fa0 +

ea
mac

!

υ ×

B ⋅ ∂ !fa1

∂

!υ
= [Cab !fa1, fb0( )+

b
∑ Cab fa0, !fb1( )]  (38) 

where 

!E⊥
0( ) =

E⊥

0( ) +


V 1( )

c
×

B  (39) 

These solutions are subject to the conditions 

d3 !υ !fa1∫ = 0  (40) 

d3 !υ ma

!υ !fa1∫

a
∑ = 0  (41) 

d3 !υ
1
2
ma !υ 2 !fa1∫

a
∑ = 0    . (42) 

Equations (40) and (42) and the parallel component of Eq. (41) render the solutions unique and 
identify the parameters na,T  and V  as densities, temperature and parallel mass velocity. The 
perpendicular component of Eq. (41) is required because of the transformation in Eq. (34) that 
removes the first-order perpendicular mass velocity 


V⊥

1( )  from !fa1 .  
Time derivatives of the fluid variables in the first order frequency scale δω0  are obtained 

from the kinetic equation in the same scale, which is a continuation of Eq. (23) to the next order. 
It reads  

∂fa0
∂t 1( )

+
∂fa1
∂t 0( )

+

υ ⋅∇fa1 +

ea
ma


E 1( ) ⋅

∂fa0
∂

υ
+
ea
ma


E 0( ) ⋅

∂fa1
∂

υ
+
ea
ma


E −1( ) +


υ
c
×

B

&

'
(

)

*
+⋅
∂fa2
∂

υ

= Cab fa2, fb0( )+Cab fa1, fb1( )+Cab fa0, fb2( ),- ./
b
∑

   . (43) 

Instead of transforming this equation to the variable !υ  and applying the solvability 
conditions by performing the operations d3∫ "υ , d3∫ "υ

a
∑ ma


υ , d3∫ "υ

a
∑ ma "υ 2 2 , it proves more 

convenient to regard the time derivatives of the fluid variables as given by the moment equations 
of Section II, and evaluate the moments occurring in these equations accurate to the first order by 
using the distribution functions fa0  and fa1 . The results are expressions of transport fluxes in 
terms of integrals involving fa0  and !fa1 , which are stated in the following.  
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To begin with, dropping the superscripts that indicate orders, the stress tensor is found from 

π =


π a

a
∑ = d3 "υ ma


"υ

"υ −
1
3

"υ 2

I

$

%
&

'

(
)∫

a
∑ "fa1  (44) 

and the heat flux from 
q = qa

a
∑ = d3 "υ

1
2
ma "υ 2 "fa1∫

b
∑    . (45) 

With first order accuracy, the individual velocity 

Va  is the sum of the mass velocity 


V  and 

the deviation from the mass velocity ua : 

Va =


V + ua  (46) 

with 
ua =

1
na

d3 !υ !

υ !fa1∫    . (47) 

The constraint on the perpendicular component u⊥a  coming from the perpendicular 
component of Eq. (41) gives rise to an expression for 


!E⊥
0( )  in terms of the fluid variables 

including the first-order current density 

j 1( ) . The parallel component of Eq. (41), on the other 

hand, only eliminates the indeterminacy (a term corresponding to a common mass velocity) in 
the solution, and does not determine 


E 0( ) . Instead, we can evaluate the parallel current j 1( )  from 

j 1( ) = naeau a
a
∑  (48) 

and solve for 

E 0( )  in terms of j 1( )  and other fluid variables. The zeroth order electric field 


E 0( )  

thus determined can be combined with Eq. (33) for the lower order 

E −1( )  to yield an equation of 

the form  

E +

V
c
×

B = function of na,T,∇na,∇T,


j  (49) 

where 

E =

E −1( ) +


E 0( )  and 


V =

V 0( ) +


V 1( ) .  This equation can be regarded as a generalized Ohm’s 

law.  
One might be inclined to express 


j  in terms of 


E  instead.1,3 It would then be tempting to 

regard the current density in the 

j ×

B  term in Eq. (4) to be given by the same expression. But 

this would be in error because, when accuracy to the frequency scale δω0  is required, the second 
order current 


j 2( )  enters in the 


j ×

B  term. Indeed, when perpendicular mass velocity is chosen 
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as an independent fluid variable, the first-order form of Eq. (2) determines 

j 2( ) , just as the zeroth 

order form determines 

j 1( ) . On the other hand, if 


j  is equated to c∇×


B 4π  through the second 

order, and 

B  is considered to be the only independent field variable, Eq. (2) remains valid to the 

first order. A dynamically consistent set of equations accurate to the frequency scale δω0  
consists of Eqs. (2–4), (12), (13) and (49), together with fluxes determined from Eqs. (44), (45) 
and (47). They are the equations of non-ideal magnetohydrodynamics. 

V. Simple Plasma 
A simple plasma contains only one ion species, with charge Zi  and mass mi . In the relevant 

equations of the last section in this case, the index a  is either e  or i . The solution of the 
transport problem described in this section is also based on treating me mi  and the ratio of 
collision frequency to gyro-frequency for both electron and ion to be small. As a result, various 
quantities acquire diverge magnitudes, causing time variations in many different frequency 
scales, and creating the problem of deciding what terms to keep for a consistent description in a 
given time scale.  Instead of resolving the time scales, the expediency of simply keeping terms of 
two lowest orders in each of the fluid variables based on the approximations will be adopted. 

A.  Parallel velocities and heat fluxes  

For Eq. (35), which determines parallel velocities and heat flux, the distribution functions !fe1  
and !fi1  are both of the same order λ  , the ratio of mean-free-path over parallel gradient length. 
This gives rise to the estimates from Eqs. (45) and (47) that 
u e ~ me mi( )−1 2 λ ( )υi, q i ~ p λ ( )υi, q e ~ me mi( )−1 2 q i . The condition ρeu e + ρiu i = 0 , 

which follows from the parallel component of Eq. (41), then leads to u i ~ me miυi , two orders 

in me mi  smaller than u e . If ion parallel heat flux q i  is included in the temperature equation 

[Eq. (5)], it is necessary to calculate the first two leading orders of q e  to maintain a consistent 

time scale. The electron version of Eq. (35) with the required accuracy is 
!υ

pe
⋅ ∇pe + nee


E 0( ) +

me !υ 2

2T
−
5
2

%

&
'

(

)
*ne∇T

+

,
-

.

/
0 fe0 = Cee

 +νeiL( ) !fe1  (50) 

where Cee
  is the linearized Fokker-Planck operator, L = 1 2( ) ∂ ∂ "


υ( ) ⋅ "


υ "

υ − "υ 2


I( ) ⋅∂ ∂ "


υ  is the 

pitch angle scattering operator, and νei = 4πZi
2e4ni lnΛ me "υ 3 . In the approximate electron-ion 

collision operator, the term Cei fe0, !fi1( ) =νei me !υ u i T( ) fe0  has been neglected in view of the 

estimate for u i .  
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Using the approximation Cie !fi1, fe0( ) = 0, Cie fi0, !fe1( ) = !υ Fei pi( ) fi0  where 

Fei = d3 !υ me !υ∫ νeiL !fe1 , and the relation 

b ⋅ ∇pe + nee


E 0( )( ) = Fei  that follows from the electron 

equation, the ion equation simplifies to 

!

υ ⋅

mi !υ
2

2T
−
5
2

$

%
&

'

(
)
∇T
T

fi0 =Cii
 !fi1    . (51) 

From the solution to Eq. (50), the electron parallel velocity and heat flux can be expressed in the 
form 

u e = −
τ ei
mene

λ11 ∇ pe + neeE
0( )( )+λ12ne∇ T#

$
%
&  (52) 

q e =
5
2
peu e −

Tτ ei
me

λ21 ∇ pe + neeE
0( )( )+λ22ne∇ T#

$
%
&  (53) 

where τ ei = 3 meT
3 2 4 2π Zi

2e4ni lnΛ . The Zi  dependent dimensionless coefficients 
λ11,λ12 = λ21( ),λ22  are introduced in Ref. 8, which also provides tabulated values for them. In 
particular, for Zi =1 , λ11 =1.975, λ12 = λ21 =1.389, λ22 = 4.174 . The presence of the term 
involving u e  in Eq. (53) in comparison with a similar equation in Ref. 8 is because the heat flux 
in that reference is relative to the electron velocity rather than the mass velocity. For 
completeness, the solution of Eq. (50) based on a three-term expansion of the distribution 
function in the Sonine polynomials is described in Appendix B. Sample results of the 
coefficients are also given there. 

The parallel electric field is solved for from Eq. (52) after replacing u e  by the parallel 
current using j = −neeu e , which is accurate in two orders of me mi .  The result is 

E 0( ) = −
∇ pe
nee

−
λ12
λ11

∇ T
e

+
j
σ

 (54) 

where σ = λ11 nee
2τ ei me . Using the above equation to eliminate E 0( ) , Eq. (53) becomes 

q e = − λ22 −
λ12
λ11

λ21
"

#
$

%

&
'
peτ ei
me

∇ T − λ12
λ11

+
5
2

"

#
$

%

&
'
T
e
j    . (55) 

The explicit dependence on current density for the heat flux differs from most existing 
works. From solving Eq. (51), the ion parallel heat flux is given by 
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q i = −3.91
piτ i
mi

∇ T  (56) 

where τ i = 3 miT
3 2 4 π Zi

4e4ni lnΛ .  

B.  Perpendicular velocities and heat fluxes 

For the solution of Eq. (37), which gives the perpendicular components of velocities, heat 
fluxes, and electric field, the assumption is made that the ratio of collision frequency to gyro-
frequency is small for both electron and ion, which is the case for strongly magnetized plasmas. 
This represents a supplementary expansion within the master expansion in δ , and allows closed 
forms for the fluxes to be obtained for plasmas with an arbitrary number of ion species.  As 
described in Ref. 8, the leading order solution !fa1

0( )  of Eq. (37) is found by neglecting the 
collision terms. The result is  

!fa1
0( ) =

ma

!υ

T
⋅ b̂× c

naeaB

A⊥a − naea


!E⊥
0( ) +

ma !υ 2

T
−
5
2

&

'
(

)

*
+na∇⊥T

-

.
/

0

1
2 fa0  (57) 

where  

A⊥a =∇⊥pa −

ρa
ρ

∇⊥p−

j 1( )

c
×

B

%

&
''

(

)
**    . (58) 

The leading order fluxes are determined using Eq. (57). Correction to the fluxes in the next order 
(in the ratio of collision frequency over gyrofrequency) is found by first evaluating the collision 
terms using !fa1

0( ) . The collision terms consist of the friction force 

Fab = d3 !υ ma


!υ∫ Cab !fa1

0( ), fb0( )+Cab fa0, !fb1
0( )( )#

$
%
&  and heat friction 


Gab = d3 !υ ma


!υ ma !υ 2 2T − 5 2( )∫ Cab !fa1

0( ), fb0( )+Cab fa0, !fb1
0( )( )$

%
&
'    .  

They are given by 

Fab =

1
1+ma mb

mana
τ ab

1
eB

b̂×

A⊥b
Zbnb

−


A⊥a
Zana

+
3
2

1
ma +mb

mb

Za

−
ma

Zb

$

%
&

'

(
)∇T

+

,
-

.

/
0 (59) 


Gab=

1
(1+ma/ma)

3 2

mana
τ ab

1
eB

b̂× 3
2


A⊥a
Zana

−


A⊥b
Zbnb

$

%
&

'

(
)−

1
1+ma/ma

1
Za

13
4
+ 4ma

mb

+
15
2
ma
2

mb
2

$

%
&

'

(
)−

1
Zb

27
4
ma

mb

*

+
,

-

.
/∇T

1
2
3

43

5
6
3

73
(60) 
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where τ ab = 3 maT
3 2 4 2π Za

2 Zb
2e4nb lnΛ . Performing the operations d3∫ "υ ma


"υ  and 

d3∫ "υ ma

"υ ma "υ 2 T − 5 2( )  on Eq. (37), the perpendicular velocities and heat fluxes accurate to 

two orders in the ratio of gyro-radius over scale length are found to be 

na
u⊥a =

c
eaB

b̂×

Aa − naea $E⊥

0( ) −

Fab

b
∑

&

'
(

)

*
+  (61) 

q⊥a =
5
2
pa
u⊥a +

cT
eaB

b̂× 5
2
na∇T −


Gab

b
∑

&

'
(

)

*
+  (62) 

where the terms that depend on the collision integrals are formally smaller. The condition 
ρa

a
∑ u⊥a = 0  that follows from the perpendicular component of Eq. (41) determines 


!E⊥
0( )  in the 

form 

!E⊥
0( ) =

1
ρ

ma

ea


A⊥a −


Fab

b
∑

%

&
'

(

)
*

a
∑    . (63) 

Specializing to a simple plasma and taking in addition the parameter me mi  to be small, we 
have the estimates u⊥e ~ u⊥i ~ q⊥e pe ~ q⊥i pi ~ ρBe ( )υe ~ ρBi ( )υi  to leading order, where 
ρBe   and ρBi   are ratios of gyro-radius to perpendicular scale length for electron and ion 
respectively. Corrections are smaller by the order of the ratio ρBe   for u⊥e,u⊥i,q⊥e , and the ratio 

ρBi   for q⊥i .  In this case, 

A⊥e =∇⊥pe,


A⊥i = −∇⊥pe +


j 1( ) ×


B / c , u⊥i = 0 , 


j⊥ = −nee

u⊥e  and 
Eq. (63) reduces to  

!E⊥
0( ) =

1
nee

−∇⊥pe +

j 1( )

c
×

B

&

'
((

)

*
+++


j⊥
1( )

σ ⊥

−
3
2

1
Ωeτ ei

1
Zie

b̂×∇T  (64) 

with σ ⊥ = nee
2τ ei me  and Ωe = eB mec , in which the last two terms are formally smaller.  

Combining Eqs. (33), (54) and (64), and removing superscripts, the relation  

E +

V
c
×

B = −∇pe

nee
−
λ12
λ11

∇ T
e

+
j
σ

+


j ×

B

neec
+


j⊥
σ ⊥

−
3
2

1
Ωeτ ei

1
Zie

b̂×∇T  (65) 

follows, which can be regarded as a generalized Ohm’s law. It can be used for eliminating the 
electric field in the fluid equations valid through the first order frequency scale δω0  (and second 
order in the ratio of collision frequency over gyrofrequency). 
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Using Eqs. (60) and (62), the electron and ion perpendicular heat fluxes are computed to be  
q⊥e = −

5
2
cpe
eB

b̂×∇T − 5
2
T
e

j⊥ −

neρBe
2

2τ ee
1+ 13Zi
4 2

%

&
'

(

)
*∇⊥T +

3
2

1
Ωeτ ei

T
e

j × b̂  (66) 

q⊥i =
5
2
cpi
ZieB

b̂×∇T − niρBi
2

τ i
1+ 15
2 2

me

mi

1
Zi

%

&
''

(

)
**∇⊥T  (67) 

where the gyro-radii are defined by ρBe = c 2meT eB, ρBi = c 2miT ZieB . In these 
expressions, the first two terms of Eq. (66) and the first term of Eq. (67) are formally larger than 
the rest in an expansion in gyro-radius over gradient length.  

C.  Parallel viscous stress tensors 

The part of the stress tensor that depends on the gyro-phase averaged distribution functions is 
derived from the solution of Eq. (36), and can be referred to as the parallel viscous stress. The 
electron and ion contributions to the parallel viscous stress have the estimates 
π i ~ λ ( ) p, π e ~ me miπ i . In the electron version of Eq. (36), the electron ion collision can 
be approximated by pitch-angle scattering. Solution by expansion in Sonine polynomials as 
shown in Appendix B leads to the electron contribution:  

π e = −αe peτ ee


W0  (68) 

where  

W0 =

3
2
b̂b̂− 1

3

I

"

#
$

%

&
'b̂ ⋅

W ⋅ b̂  (69) 


W =∇


V 0( ) + ∇


V 0( )( )

T
−
2

I
3
∇⋅

V 0( )  (70) 

and αe  is a numerical coefficient that depends on Zi , being equal to 0.73  for Zi =1 .  
To determine the ion contribution with the same degree of accuracy in an expansion in 

me mi , it is necessary to keep the ion-electron collision operator in Eq. (36) to leading order, 
which is neglected in Ref. 4. This operator is 

Cie !fi1, fe0( ) = 1
τ ie

me

mi

∂
∂

!υ
⋅

!υ !fi1 +

T
mi

∂ !fi1
∂

!υ

$

%
&

'

(
)  (71) 
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where τ ie = 3 miT
3 2 4 2π Zi

2nee
4 nΛ . Again using expansion in Sonine polynomials as shown 

in Appendix B, and treating Cie  as a perturbation, the ion contribution is found to be 


π i = − 0.96−3.17

1
Zi

me

mi

"

#
$$

%

&
'' piτ i


W0    . (72) 

The correction terms of the order of me mi  in both Eqs. (67) and (72) are not included in 
Ref. 4. They have the same order of magnitude as some of the terms retained in Eq. (66) for the 
electron heat flux and Eq. (68) for the electron parallel viscosity respectively. 

D.  Gyro-viscous and Perpendicular Stress Tensors 

The parts of the stress tensor that depend on the gyro-phase dependent parts of the distribution 
functions obeying Eq. (38) have the estimates π i ~ ρBi ( ) p, π e ~ me mi( )π i , with corrections 
smaller by the factors ρBi   and ρBe  , respectively. Just as for the perpendicular velocity and 
heat flux, these components can be calculated for a multi-component plasma. First, writing the 
magnetic field term in Eq. (38) as −Ωa

−1∂ $fa1 ∂θ  where Ωa = eaB mac  and θ  is the gyro-phase 
angle, the leading order distribution functions are found by neglecting the collision term and 
integrating over θ , resulting in the equation 

!fa1
0( ) =

1
Ωa

ma

2T

!υ

!υ −

!υ

!υ( )∫ dθ :


Wfa0  (73) 

from which the gyro-viscous stress can be found by direct evaluation to be  

π∧a =

pa
2Ωa


W3 + 2


W4( )    . (74) 

In this equation, the components of the strain rate tensor are defined using the projection 
tensors 


P = b̂b̂,


P⊥ =

I − b̂b̂ , 


P∧  with components 


P∧( )

αβ
= εαβγbγ  as follows: 


W3 =

1
2

P⊥

W

P∧ −

P∧

W

P⊥( )  (75) 


W4 =


P

W

P∧ −

P∧

W

P    . (76) 

In the next order in ρBa  , Eq. (38) becomes 

−
1
Ωa

∂ $fa1
1( )

∂θ
=Cab $fa1

0( ), fb0( )+Cab fa0, $fb1
0( )( )    . (77) 
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Upon multiplication by 
!υ

!υ −

!υ

!υ( )∫ dθ  on both sides and integrating over velocities, the 

contribution of species a  to the viscous stress tensor in this order, which can be called the 
perpendicular stress, can be expressed in the form 

π⊥a =


π⊥ab

b
∑  (78) 

where, from evaluation of the integrals involving the collision terms, it is found that  


π⊥ab = −

1
1+ma mb( )3 2

3
10

+
1
2
ma

mb

#

$
%

&

'
(
1
Ωa

−
1
5
ma

mb

1
Ωb

*

+
,

-

.
/

pa
Ωaτ ab


W1 + 4


W2( )  (79) 

with 

W1 =


P⊥

W

P⊥ − tr


P⊥

W

P⊥ 2( )


P⊥  (80) 


W2 =


P

W

P⊥ +

P⊥

W

P  (81) 

The contribution π⊥ab  is negligible when a  refers to an ion species and b  to the electrons. 
Combining electron and ion contributions, the full stress tensor for a simple plasma is given 

by  


π = − 0.96−3.17 me

mi

"

#
$$

%

&
'' piτ i +αe peτ ee

(

)
*
*

+

,
-
-


W0 +

pi
2Ωi


W3 + 2


W4( )− 310

pi
Ωi
2τ i


W1 + 4


W2( )    . (82) 

Finally, direct calculation shows that the entropy production rate θ  is given by 

Tθ =
j2

σ
+
j⊥
2

σ ⊥

+ λ22 −
λ12
λ11

λ21
!

"
#

$

%
&
peτ ei
me

+3.91 piτ i
mi

!

"
#

$

%
& ∇ nT( )

2

+
neρBe

2

2τ ee
1+ 13Zi
4 2

!

"
#
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%
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niρBi
2

τ i
1+ 15
2 2

me

mi

1
Zi

!

"
##

$

%
&&

'

(
)
)

*

+
,
,
∇⊥nT( )2

+ 0.48+ 2.24 me

mi

!

"
##

$

%
&& piτ i + 0.37peτ ee

!

"
#
#

$

%
&
&


W0 :


W0 +

3
20

pi
Ωi
2τ i


W1 :

W1 + 4


W2 :


W2( )

   . (83) 

Braginskii4 obtains the momentum and temperature equations for the electron and ion fluids for a 
simple plasma. When the electron and ion temperatures are set equal to each other, the results 
can be compared with those in this section. In making the comparison, a few steps must be taken 
to manage the difference in forms of Braginskii’s equations with the ones in this work. One step 
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is to replace the ion-electron velocity difference u =

Vi −

Ve  by the current density using 

u =

j nee  everywhere it occurs. Another is to identify the ion velocity with the mass velocity, 

and express the electron velocity in terms of it and the current density. One more is to recognize 
that the electron heat flux in Braginskii’s equations is defined relative to the electron fluid 
velocity instead of the mass velocity. It then follows that the present work agrees with 
Braginskii’s, except for the terms in Eqs. (67) and (72) that include corrections of the order of 
me mi , which are of the same order of magnitude as the corresponding quantities for the 

electron fluid, and the neglect of the gyro-viscous and perpendicular stress tensors for the latter, 
which would represent corrections of order me mi  to the contributions from the ion fluid (the 
retention of contributions to the gyro-viscous and perpendicular stress tensors from electrons 
cannot be justified when the ion contributions are correct only to the order me mi ).  

Equation (65) can also be found in Braginskii’s article, where it is also referred to as the 
generalized Ohm’s law. However, it is derived there from the electron momentum equation by 
neglecting the acceleration and the viscosity terms. Ref. 9 regards the generalized Ohm’s law to 
arise from the requirement of an equation for ∂


j ∂t , which is equivalent to the electron 

momentum equation when the approximation me mi <<1  is taken. Following this line of 
reasoning, the viscosity term can occur in the generalized Ohm’s law, as is found, for example, 
in Ref. 10. This is not true in the present approach, in which the generalized Ohm’s law is an 
expression for the electric field in terms of fluid variables including the current density, and 
viscosity does not influence the electric field in the frequency scale δω0 . 

VI. Plasma with Two Ion Species 
Certain general features in the formulation in Sections II, III and IV, such as the inter-

diffusions of ions, are not present for simple plasmas. In this section, plasmas with two ion 
species, denoted by i  and j , are considered.  Examples of applications are to plasmas with one 
main ion species and an impurity species, and plasmas with deuterium and tritium ions. Electron 
mass is taken to be small in comparison with ion masses.  
Consider first the calculation of the parallel velocities and heat flux from Eq. (35). For each ion 
species, collisions with electrons can be approximated in the same way as for simple plasmas in 
the previous section. Thus, for a = i  and j , Cae !fa1, fe0( ) = 0, Cae fa0, !fe1( ) = !υ Fea pa( ) fa0  where 

Fea = d3 !υ me !υ∫ νeaL !fe1 . The parallel frictions Fei  and Fej  can be eliminated with the help of the 

parallel force balance equation ∇ pe + neeE
0( ) = Fei +Fej  that follows from the electron version 

of Eq. (35), and the relation Fei :Fej = Zi
2ni : Z j

2nj . This gives rise to the pair of ion equations 

decoupled from the electron equation:  
!υ

pi
Dij +

mi !υ
2

2T
−
5
2

#

$
%

&

'
(ni∇ T

*

+
,

-

.
/ fi0 =Cii !fi1, fi0( )+Cii fi0, !fi1( )+Cij !fi1, f j0( )+Cij fi0, !f j1( )  (84) 
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!υ

pj
−Dij +

mj !υ
2

2T
−
5
2

#

$
%%

&

'
((nj∇ T

*

+
,
,

-

.
/
/
f j0 =Cjj !f j1, f j0( )+Cjj f j0, !f j1( )+Cji !f j1, fi0( )+Cji f j0, !fi1( )  (85) 

where 

Dij =
ρiρ j

ρij

∇ pi
ρi

−
∇ pj
ρ j

#

$
%%

&

'
((− ZinieE

0( ) −
ρi
ρij
∇ pe +

Zi
2ni

Zi
2ni + Z j

2nj
∇ pe + neeE

0( )( )    . (86) 

Also, nij = ni + nj , pij = pi + pj  and ρij = ρi + ρ j . The solution of these equations yields the 
difference in parallel ion velocities and the total ion parallel heat flux, which can be expressed in 
the form  

u i −u j = −
1
mimj

τ ij
nij

l11Dij + l12nij∇ T( )  (87) 

q i + q j =
5
2
piu i + pju j( )− T

mimj

τ ij l21Dij + l22nij∇ T( )  (88) 

where τ ij = 3 mimj( )
1 4
T 3 2 4 2π Zi

2 Z j
2nije

4nΛ , and l11, l12 (= l21), l22  are dimensionless 
coefficients depending on mi mj , Zi Z j  and ni nj . Invoking the condition ρiu i + ρ ju j = 0 , 
which follows from the parallel component of Eq. (41) with neglect of the electron term, the 
deviation from the common parallel mass velocity for individual ions can be found from 

u i =
ρ j

ρij
u i −u j( ) u j = −

ρi
ρij

u i −u j( )  (89) 

In Appendix B, the solution of Eqs. (84) and (85) by expansion in the Sonine polynomials is 
described and some results for the coefficients lmn  are presented.  

Equations (87) and (88) involve the parallel electric field E 0( )  through Dij , which can be 
determined by considering the electron version of Eq. (35). Here the same approximation for the 
electron-ion collision operator applies for i  and j . The term involving u i  or u j  in this 
approximation is of a higher order in me mi  or me mj . It is retained so that the electron 
parallel heat flux can be computed with a correction of this order, which is comparable to the ion 
parallel heat flux. Defining 

uij =
Zi
2niu i + Z j

2nju j

Zi
2ni + Z j

2nj
=

Zi
2

mi

−
Z j
2

mj

"

#
$$

%

&
''
ρiρ j

ρij

u i −u j

Zi
2ni + Z j

2nj
 (90) 
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the shifted distribution function !!fe1 = !fe1 − me !υ uij T( ) fe0  satisfies Eq. (50) with νei  replaced by 

νeij = 4π Zi
2ni + Z j

2nj( )e4 lnΛ me "υ 3 . Consequently, Eqs. (52) and (53) still hold, with u e  

replaced by d3 !υ !υ∫ !!fe1 / ne  and τ ei  replaced by τ eij , which is obtained from τ ei  by replacing Zi  

with Zeff = Zi
2ni + Z j

2nj( ) ne .  Introducing the ion parallel current  

j ij = e Ziniu i + Z jnju j( ) = e Zi
mi

−
Z j

mj

"

#
$$

%

&
''
ρiρ j

ρij
u i −u j( )    , (91) 

the parallel electric field E 0( )  can be solved for from the modified form of Eq. (52) and 
expressed in the form 

E 0( ) = −
∇ pe
nee

−
λ12
λ11

∇ T
e

+
1
σ

j − j ij + neeuij( )  (92) 

Together with Eq. (87) and the definitions in Eqs. (90) and (91), this relation allows the 
simultaneous determination of E 0( )  and u i −u j  in terms of the independent fluid variables.  

Eliminating E 0( )  from the expression for q e  given by the modified form of Eq. (53), the 
electron parallel heat flux is 

q e = − λ22 −
λ12
λ11

λ21
"

#
$

%

&
'
peτ eij
me

∇ T − λ12
λ11

+
5
2

"

#
$

%

&
'
T
e
j − j ij( )− λ12λ11

peuij    . (93) 

In this expression, the terms involving j ij  and uij  are corrections in the expansion in me mi , 
but are of the same order of magnitude as the ion parallel heat flux given by Eq. (88).  

The perpendicular velocities and heat fluxes can be directly obtained from Eqs. (61) and (62) 
of the previous section. Treating the ratio of electron mass to ion masses as small, the relations  

A⊥e = ∇⊥pe  (94) 


A⊥i =

ρiρj
ρij

∇⊥pi
ρi

−
∇⊥pj
ρj

$

%
&&

'

(
)) +

ρi
ρij

−∇⊥pe +

j
c
×

B

$

%
&

'

(
)  (95) 


A⊥ j = −

ρiρj
ρij

∇⊥pi
ρi

−
∇⊥pj
ρj

$

%
&&

'

(
)) +

ρj
ρij

−∇⊥pe +

j
c
×

B

$

%
&

'

(
)  (96) 
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can be used in these equations. Thus, the generalized forces on which the velocities and fluxes 
depend are ∇⊥pe , ∇⊥T,


j⊥ , and ∇⊥pi ρi −∇⊥pj ρ j . In addition, the friction terms 


Fie,

Fje,

Gie,

Gje  can be neglected, and so is the term involving the electron mass in Eq. (63) for the 

perpendicular electric field. The latter equation takes the form 

!E
⊥

(0 ) =
1
eρij

mi

Zi


A⊥i +

mj

Z j


A⊥ j

#

$
%%

&

'
(( −

1
eρij

mi

Zi
−
mj

Zj

#

$
%%

&

'
((

Fij    . (97) 

The perpendicular velocity difference between the two ion species is 

u⊥ i −
u⊥ j =

c
eB

b̂ ×


A⊥ i
Zini

−


A⊥ j

Zjnj
−

1
Zini

−
1
Zjnj

$

%
&&

'

(
))

Fij

*

+
,
,

-

.
/
/
   . (98) 

An expression for 

E +

V ×

B c  correct to the frequency scale δω0  in terms of the independent 

fluid variables is obtained by adding Eqs. (92) and (97). In contrast with simple plasmas, this 
generalized Ohm’s law cannot be obtained from the momentum equation of the electron fluid.  

The electron contribution to the parallel viscous stress is given by Eq. (68), in which the 
coefficient αe  depends on Zeff  instead of Zi . As shown in Appendix B, the ion contribution can 
be written in the form 


π

|| i
+

π
|| j
= − αi+βi

ne
Z j

2nij
me

mi

+γi
ne
Zi

2nij
me

mj

"

#
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%

&
'' pi+ α j+βj

ne
Z j

2nij
me
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+γj
ne
Zi

2nij
me
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"

#
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%

&
'' pj

(

)
*
*

+

,
-
-
2τ ij

W0  (99) 

with six dimensionless coefficients depending on the mass ratio of the two ions. 
The electron contributions to the gyro-viscous and perpendicular stresses are negligible as for 

a simple plasma. The ion contributions are the sums π∧i +

π∧ j  and π⊥i +


π⊥ j , where the 

individual terms are defined in Eqs. (74), (78) and (79) of the previous section.   

VII. Classical Transport 
In classical transport,8 the component of the plasma velocity perpendicular to the magnetic 

field is considered to be smaller than the thermal velocity by one order in the ratio of gyroradius 
over scale length. The parallel velocity is either ignored in a slab model of the magnetic field, or 
considered also to be first order small in the ratio of mean-free-path over scale length. To obtain 
the fluid equations and calculate the transport coefficients, the distribution function is 
accordingly expanded in δ . In the present approach, this limit can be recovered directly from the 
fluid equations of the preceding sections by taking 


E −1( ) = 0  and 


V 0( ) = 0 .  

First, it is clear from Section III that there is no time variation in the frequency scale of ω0  
(∂ ∂t 0( ) = 0 ), so that Eqs. (30) and (31) describe MHD equilibrium. The equilibrium equations 
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continue to hold in the frequency scale δω0  because, examining Eq. (4), π = 0  on account of 
V 0( ) = 0 , and 

∂

V
∂t

=
∂

V 0( )

∂t 1( )
+
∂

V 1( )

∂t 0( )
= 0    . (100) 

There is now no equation that directly describes the dynamical evolution of the mass velocity 

V . 

Instead, it is necessary to equate the time derivative of the MHD equilibrium equations to zero so 
that they continue to hold true if initially they are. The resulting equation also determines the 
electric field, and can be used in lieu of Eq. (49) for its elimination from Faraday’s law and other 
fluid equations. 

For simplicity, this procedure is applied to a simple plasma in a slab model where 

B = Bzẑ , 

V = 0 , and spatial variation is only in the x-direction. The current density is 

j = jy

y  and the 
equations for the fields are 

∂Bz
∂x

= −
4π
c
jy  (101) 

∂Bz
∂t

= −c
∂Ey

∂x
   . (102) 

The mass continuity equation [Eq. (2)] and the temperature equation [Eq. (6)] simplify to  
∂n
∂t
+
∂
∂x

nVx( ) = 0  (103) 

and  
3
2
∂p
∂t
+
∂
∂x

3
2
pVx

"

#
$

%

&
'+ p

∂Vx
∂x

+
∂qx
∂x

= 0    , (104) 

while the momentum equation [Eq. (4)] becomes 

∂
∂x

p+ Bz
2

8π
"

#
$

%

&
'= 0    . (105) 

The x-component of the generalized Ohm’s law [Eq. (65)] is  

Ex +
1
c
VyBz =

1
nie

∂pi
∂x

   . (106) 
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It involves the quantities Ex  and Vy  that appear in no other equations, and thus plays no further 
role. The y-component can be solved for Vx to express it as the sum of a E ×B  velocity and a 
diffusion velocity: 

Vx =VE +VD  (107) 

where  

VE =
cEy

Bz
 (108) 

VD = −
ρBe
2

2τ ei
1
pe

∂p
∂x

−
3
2
1
ZiT
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∂x

#

$
%

&

'
(    . (109) 

Combining Eqs. (66), (67) and using Eqs. (101) and (105), the x-component of the heat flux 
is  

qx = −
niρBi

2
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neρBe
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2τ ee
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   . (110) 

Upon differentiating Eq. (105) with respect to time and using Eqs. (102) and (104), the 
resulting equation can be cast in the form 

∂
∂x

5
3
p+ Bz

2

4π
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#
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%

&
'
∂VE
∂x

+
5
3
p∂VD
∂x

+VD
∂p
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∂qx
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(

)
*

+

,
-= 0    , (111) 

which is an equation for VE , and hence Ey , allowing it to be eliminated from Eq. (102). We thus 
obtain a dynamically consistent system comprising Eqs. (102–104) and Eqs. (107–111), with 
Eq. (105) serving as an initial condition.  

In so far as the solution of Eq. (111) depends on boundary conditions, the particle flux is 
nonlocal. For low values of β , defined as 8π p Bz

2 , it becomes diffusive because of the estimate 
VE VD ~ β  that follows from Eq. (111). This dependence of the nature of the particle flux on β  
is not apparent from existing works as the need to produce a dynamically consistent system of 
equations for the plasma and the fields is often overlooked. 

VIII. Concluding Remarks 
This work begins with the observation that the perpendicular mass velocity is not an 

independent fluid variable established by the relaxation of plasma in the time scale of 
gyromotion and collisions. And yet the perpendicular momentum equation is included in existing 
works. We find a resolution of the discrepancy by taking into consideration the need to couple 
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the plasma equations to Ampere and Faraday’s laws for the electromagnetic field. A central role 
is played by the generalized Ohm’s law, which is used to eliminate the electric field. The 
resulting system of equations gives a consistent description of the dynamical evolution of the 
plasma and the fields in terms of fluid variables consisting of the species densities, common 
temperature, mass velocity, and magnetic field. The system reduces to the ideal 
magnetohydrodynamic equations in the zeroth order frequency scale, and describes transport 
processes in the first order. Existing results for simple plasmas are reproduced, and recipe for 
calculating transport coefficients for plasmas with two ion species are obtained. The limit of 
small mass velocity yields equations ascribable to classical transport, but the need to eliminate 
the electric field leads to a nonlocal nature for the process at finite beta. Although strictly 
speaking the equations are applicable only to plasmas with short collisional mean free path, 
features emphasized in the present work such as the need for dynamic consistency for the joint 
evolution of plasma and field variables and the role and form of the generalized Ohm’s law, 
might still prove useful in modeling high temperature plasmas. 
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APPENDIX A: JUSTIFICATION FOR THE NEGLECT OF DISPLACEMENT 
CURRENT AND QUASI-NEUTRALITY 

Using the orderings cE⊥ Bυ ~δ 0  and the fact that the most rapid time variation considered 
corresponds to the frequency scale ω0 , the estimate  

∂E⊥ ∂t
c∇×B

~ ω0E⊥
cB

~ υ
c

%

&
'

(

)
*
2

 (A1) 

is obtained. The similar ratio with E  replacing E⊥  is smaller by a factor δ , as E E⊥ ~ δ . 
Thus for nonrelativistic motions the displacement current can be neglected. 

In the equation of charge conservation, the time rate of change of the charge density 
ρe =∇⋅E 4π  has the estimate 

∂ρe ∂t
∇⋅

j
~ ω0E⊥

cB
~ υ

c
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'

(
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*
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 (A2) 

using E⊥  and Ampere’s law. On the other hand, using E  with its estimate eE  T ~ δ 0  and 
j ~ δneυ ,  

∂ρe ∂t
∇⋅
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ω0E
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
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)
*
2

 (A3) 

where λD = T 4πne2( )
1 2

 is the Debye length.  
In the momentum equation, the force density due to the electric field has the estimate 

ρeE⊥

ρ∂V ∂t
~ E⊥

2 
4πρω0υ

~ υA

c
#

$
%

&

'
(
2

 (A4) 

using E⊥  where υA = B2 4πρ( )
1 2

 is the Alfven velocity, and 
ρeE
ρ∂V ∂t

~ ρeT e
ρω0υ

~ ρe
ne
~ λD


"

#
$

%

&
'
2

 (A5) 

using E .  Because the time variation of 

V  in the frequency scale δω0  is included, the two 

estimates in the above should be enhanced by the factor δ−1 . 
Thus, the assumption of quasi neutrality is justified if the conditions υA c( )2 << δ , 

λD ( )2 << δ  are satisfied, in addition to the motion being non-relativistic. 
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APPENDIX B: SOLUTION OF LINEARIZED KINETIC EQUATIONS BY 
EXPANSION IN SONINE POLYNOMIALS 

The methods of solution of a number of linearized kinetic equations by expansion in Sonine 
polynomials are described in this Appendix. 

B.1.  Parallel ion velocities and heat flux  
Consider first Eq. (84) and Eq. (85), wherein !fi1  and !f j1  are sums of parts proportional to Dij  

and nij∇ T . The part proportional to Dij  can be expanded in the form 

!fi1 = −
τ ij
pij

!υ an
n=0

N

∑ Ln
3 2( ) mi !υ

2 2T( ) fi0Dij  (B1) 

!f j1 = −
τ ij
pij

!υ bn
n=0

N

∑ Ln
3 2( ) mj !υ

2 2T( ) f j0Dij  (B2) 

where the coefficients an  and bn  are dimensionless. Substituting into Eq. (84) and Eq. (85), and 
integrating over velocity after multiplication by !υ Lm

3 2( ) mi !υ
2 2T( )  or !υ Lm

3 2( ) mj !υ
2 2T( )  

converts them into the simultaneous linear equations that hold for m = 0  to N : 

mj

mi

!

"
#

$

%
&

1 4
Zi
2ni

Z j
2nij

Hmn +
nj
nij
Mmn

ij
!

"
##

$

%
&&an

n=0

N

∑ +
mi

mj

!

"
##

$

%
&&

1 4
nj
nij

Nmn
ij bn

n=0

N

∑ = −
nij
ni
δm0  (B3) 

mi

mj

!

"
##

$

%
&&

1 4
Z j
2nj

Zi
2nij

Hmn +
ni
nij
Mmn

ji
!

"
##

$

%
&&bn

n=0

N

∑ +
mj

mi

!

"
#

$

%
&

1 4
ni
nij

Nmn
ji an

n=0

N

∑ =
nij
nj
δm0    . (B4) 

The matrix coefficients for the Fokker-Planck operator in these equations are defined by  

na
τ ab

Mmn
ab = d3∫ υ

υ

υa

Lm
3 2( ) υ

2

υa
2

"

#
$

%

&
'Cab

2υ
υa

Ln
3 2( ) υ

2

υa
2

"

#
$

%

&
' fa0, fb0

(

)
*

+

,
-  (B5) 

na
τ ab

Nmn
ab = d3∫ υ

υ

υa

Lm
3 2( ) υ

2

υa
2

"

#
$

%

&
'Cab fa0,

2υ
υb

Ln
3 2( ) υ

2

υb
2

"

#
$

%

&
' fb0

(

)
*

+

,
-  (B6) 

where υa = 2T ma ,υb = 2T mb . They satisfy the relations 

Mmn
ab =Mnm

ab , Nmn
ab = ma mbNnm

ba , M0n
ab + N0n

ba = 0    . (B7) 
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Also, Hmn =Mmn
aa + Nmn

aa . The two equations for m = 0  are linearly dependent on each other, 
so that only one needs to be kept. The system is augmented by the equation 

ni
nij
a0 +

nj
nij
b0 = 0    , (B8) 

which follows from the requirement ρiu i + ρ ju j = 0 , as contribution of electrons to the mass 
velocity is of order me mi  smaller. The transport coefficient l11  and l21  for the differential 
flow and total heat flux defined in Eq. (87) and Eq. (88) are calculated from 

l11 =
mj

mi

a0 −
mi

mj

b0  (B9) 

l21 = −
5
2

mj

mi

ni
nij
a1 +

mi

mj

nj
nij
b1

"

#
$$

%

&
''    . (B10) 

The parts of the distribution functions arising from nij∇ T  are expanded similarly to 
Eq. (B1) and Eq. (B2), with nij∇ T  replacing Dij . The coefficients l12  and l22  are also 
calculated from Eq. (B9) and Eq. (B10), except the coefficients an  and bn  now satisfy Eq. (B3) 
and Eq. (B4) with the right hand sides replaced by 5 2( )δm1  in both.  

Defining r =ma mb , the matrix coefficients of the Fokker-Planck operator for m,n = 0,1, 2  
are listed below:8,13  

M00
ab = − 1+ r( )−1 2 M01

ab = − 3 2( ) 1+ r( )−3 2 M02
ab = − 15 8( ) 1+ r( )−5 2  

M11
ab = − 13 4+ 4r +15r2 2( ) 1+ r( )−5 2 M12

ab = − 69 16+ 6r + 63r2 4( ) 1+ r( )−7 2  

M22
ab = − 433 64+17r + 459r2 8+ 28r3 +175r4 8( ) 1+ r( )−9 2  

N00
ab = r1 2 1+ r( )−1 2 N01

ab = 3r3 2 2( ) 1+ r( )−3 2 N02
ab = 15r5 2 8( ) 1+ r( )−5 2  

N10
ab = 3r1 2 2( ) 1+ r( )−3 2 N11

ab = 27r3 2 4( ) 1+ r( )−5 2 N12
ab = 225r5 2 16( ) 1+ r( )−7 2  

N20
ab = 15r1 2 8( ) 1+ r( )−5 2 N21

ab = 225r3 2 16( ) 1+ r( )−7 2 N22
ab = 2625r5 2 64( ) 1+ r( )−9 2    . 
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From these the elements of the symmetric matrix H  can be calculated to give  
H00 = H01 = H02 = 0  

H11 = − 2 H12 = −3 2 4 H22 = −45 2 16    . 

Figure 1(a-c) shows examples of the coefficients lij  as 
functions of ni nij  for the case mi mj = 3 2, Zi Z j =1 , such as 
when the two ion components are tritons and deuterons. They are 
obtained using three terms in the expansions in Sonine 
polynomials. The coefficient l11  diverges as ni nij  tends to zero or 
one. This does not present a problem as Dij  approaches zero in 
these limits.  

The limit ni nij → 0  corresponds to a trace amount of the ion 
species a  in a simple plasma with species b . In this case, u j = 0  
and Eq. (87) expresses u i  as the sum of a diffusive and a 
convective flow. Also, the coefficient l22  corresponds to the ion 
thermal conductivity for a simple plasma given in Eq. (56).  

B.2.  Parallel electron velocity and heat flux 
The electron parallel transport equation [Eq. (50)] can be 

similarly solved with the expansion 

!fe1 = −τ ei !υ cn
n=0

N

∑ Ln
3 2( ) me !υ 2 2T( ) fe0 ∇ pe + neeE

0( )( ) / pe  (B11) 

for the part proportional to ∇ pe + neeE
0( ) . The coefficients cn  satisfy the equation 

Zeff
−1Hmn + Lmn( )

n=0

N

∑ cn = −δm0  (B12) 

where Lmn =Mmn
ab  with r = 0  corresponds to the pitch angle scattering operator, and 

Zeff = Zi
2ni + Z j

2nj( ) ne . The transport coefficients defined in Eqs. (52) and (53) are determined 
from 

λ11 = c0 λ21 = −5c1 2    . (B13) 

The coefficients λ12  and λ22  for the part proportional to ∇ T  are similarly calculated, 
except Eq. (B12) for cn  now has 5δm1 2  on the right hand side. The values of λ11,λ12  and λ22  
for some values of Zeff  can be found from Table B1. They agree well with those in Ref. 8.  

FIG. 1.  Transport coefficients 
for parallel differential ion 
velocity and total heat flux 
(mi m j = 3 2, Zi = Z j = 1 ). 
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B.3.  Parallel ion viscosity  
For the computation of the ion contribution to parallel viscosity in a two-ion species plasma, 

the ion version of Eq. (36) can be written in the form 

Cii !fi1, fi0( )+Cii fi0, !fi1( )+Cij !fi1, f j0( )+Cij fi0, !f j1( )+Cie !fi1, fe0( ) = mi !υ
2

2T
P2 ξ( ) fi0b̂b̂ :


W0  (B14) 

Cjj !f j1, f j0( )+Cjj f j0, !f j1( )+Cji !f j1, fi0( )+Cji f j0, !fi1( )+Cje !f j1, fe0( ) =
mj !υ

2

2T
P2 ξ( ) f j0b̂b̂ :


W0    . (B15) 

Here the ion-electron collision terms Cie , Cje  are given by Eq. (71). We have neglected 
Cie fi0, !fe1( )  and Cje f j0, !fe1( )  because they are of higher order in the electron to ion mass ratio 
compared with the terms retained in view of the estimate !fe1 !fi1 ~ !fe1 !f j1 ~ me mi . The system 
of equations is therefore decoupled from the electron equation. It is solved by making the 
expansions 

!fi1 = xi
2P2 ξ( ) an

n=0

N

∑ Ln
5 2( ) xi

2( ) fi0τ ijb̂b̂ :

W0  (B16) 

!f j1 = x j
2P2 ξ( ) bn

n=0

N

∑ Ln
5 2( ) x j

2( ) f j0τ ijb̂b̂ :

W0    , (B17) 

where xi
2 =mi !υ

2 2T , x j
2 =mj !υ

2 2T . The dimensionless coefficients an,bn  satisfy the linear 
equations 

mj

mi

!
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#

$

%
&

1 4
Zi
2ni

Z j
2nij

'Hmn +
nj
nij

'Mmn
ij +

ne
Z j
2nij

'Mmn
ie

!

"
##

$

%
&&an

n=0

N

∑ +
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"
##
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%
&&

1 4
nj
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'Nmn
ij bn
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N
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3
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δm0  (B18) 
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2nj
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'Mmn
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1 4
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'Nmn
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N
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3
4
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where we have introduced the matrix elements of the Fokker-Planck operator as follows: 
na
τ ab

!Mmn
ab = d3∫ υxa

2Lm
5 2( ) xa

2( )P2 ξ( )Cab xa
2Ln

5 2( ) xa
2( )P2 ξ( ) fa0, fb0#

$
%
&  (B20) 

na
τ ab

!Nmn
ab = d3∫ υxa

2Lm
5 2( ) xa

2( )P2 ξ( )Cab fa0, xb
2Ln

5 2( ) xb
2( )P2 ξ( ) fb0#

$
%
&  (B21) 
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!Hmn = !Mmn
aa + !Nmn

aa    . (B22) 

The contribution of ions to the parallel viscous stress is given by 

π i +


π j = pia0 + pjb0( )τ ij


W0    . (B23) 

The values of the matrix elements in Eq. (B20) and Eq. (B21) for m,n = 0,1  are listed below, 
where r =ma mb : 

!M00
ab = − 1+ r( )−3 2 9 10+3r 2( ) !M01

ab = !M10
ab = − 1+ r( )−5 2 27 20+ 63r 20( )  

!M11
ab = − 1+ r( )−7 2 153 40+ 555r 40+ 231r2 20+ 21r3 2( )  

!N00
ab = 1+ r( )−3 2 3r 5( ) !N01

ab = 1+ r( )−5 2 9r2 5( ) !N10
ab = 1+ r( )−5 2 9r 5( )  

!N11
ab = 1+ r( )−7 2 9r2( )  

!H00 = −9 2 20 !H01 = !H10 = −27 2 80 !H11 = −123 2 64    . 

The matrix elements of the ion-electron collision operator are taken in the leading order in 
me mi : 

!M00
ie = − 3 2( ) me mi !M01

ie = !M10
ie = 0 !M11

ie = − 21 2( ) me mi    . 

Treating the ion-electron collision terms as small perturbations, the coefficients a0  and b0  
are linearly dependent on me mi  and me mj , as expressed in Eq. (99). Figure 2(a-f) shows 
examples of the coefficients αi,βi,γ i,α j,β j,γ j  as functions of ni nij  for the case 
mi mj = 3 2, Zi =1,Z j =1.  
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FIG. 2.  Parallel viscosity coefficients (mi m j = 3 2, Zi = Z j = 1 ). 

The case of plasma with a single ion species is obtained by setting nj  to zero. 
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B.4.  Parallel electron viscosity 

The electron contribution to the parallel viscous stress is obtained from the solution of the 
equation 

Cee !fe1, fe0( )+Cee fe0, !fe1( )+νeijL !fe1 =
me !υ 2

2T
P2 ξ( ) fe0b̂b̂ :


W    , (B24) 

where νeij = 4πZeff nee
4nΛ meυ

3 . The expansion 

!fe1 = xe
2P2 ξ( ) cn

n=0

N

∑ Ln
5 2( ) xe

2( ) fe0τ eeb̂b̂ :

W0  (B25) 

turns it into the equation 

!Hmn + Zeff !Lmn( )
n=0

N

∑ cn =
3
4
δm0    , (B26) 

where !Lmn = !Mmn
aa  with r = 0  are the matrix elements of the pitch-angle-scattering operator. The 

parallel viscous stress takes the form in Eq. (68), with 
αe = −c0    . (B27) 

The values of αe  for a number of Zeff  can be found in Table B1.  
 

Table B1.  Electron parallel transport coefficients 

Zeff  λ11  λ12  λ22  αe  

1 1.95 1.39 4.15 0.73 
2 2.32 2.10 6.79 0.51 
4 2.67 2.91 10.10 0.32 
16 3.13 4.27 16.14 0.10 
∞  3.39 5.16 20.31 0.00 

REFERENCES 

[1] B. B. Robinson and I. B. Bernstein, Ann. Phys. (N.Y.) 18, 110 (1962). 
[2] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, 3rd ed. 

(Cambridge University Press, Cambridge, 1970), p. 358.  
[3] P. C. Clemmow and J. P. Dougherty, Electrodynamics of Particles and Plasmas (Addison-

Wesley, Reading, 1969), p. 363.  



EQUATIONS OF NON-IDEAL MAGNETOHYDRODYNAMICS S.K. Wong and V.S. Chan 

 General Atomics Report GA–A27571  35 

[4] S. I. Braginakii, Review of Plasma Physics, edited by M. Leontovich (Consultant Bureau, 
New York, 1965), Vol. 1, p. 205. 

[5] P. Helander and D. J. Sigmar, Collisional Transport in Magnetzed Plasmas (Cambridge 
University Press, Cambridge, 2002) p. 76.  

[6] R. M. Kulsrud, Plasma Physics for Astrophysics (Princeton University Press, Princeton, 
2005) p. 197.  

[7] R. M. Kulsrud, Handbook of Plasma Physics, edited by M. N. Rosenbluth and R. Z. 
Sagdeev (North Holland, 1983) Vol. I, p. 115.  

[8] F. L. Hinton, Handbook of Plasma Physics, Vol. I, ed. M. N. Rosenbluth and R. Z. 
Sagdeev (North Holland, 1983) p. 147.  

[9] N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, Inc., New 
York, 1973) p. 91.  

[10] A. H. Glasser, C. R. Sovine, R. A. Nebel, T. A. Gianakon, S. J. Plimpton, M. S. Chi, D. D. 
Schnack, and th NIMROD Team, Plasma Phys. Control. Fusion 41, A747 (1999).  

[11] J. P. Wang and J. D. Callen, Phys. Fluids B 4, 1139 (1992).  
[12] J. J. Ramos, Phys. Plasmas 12, 052106 (2005).  
[13] S. P. Hirshman, Phys. Fluids 20, 589 (1977).  
 


