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Abstract 

An explanation is provided for the disruptive instability in diverted tokamaks when 

the safety factor  at the 95% poloidal flux surface, , is driven below 2.0.  The 

instability is a resistive kink counterpart to the current driven ideal mode that traditionally 

explained the corresponding disruption in limited cross sections [V.D. Shafranov, Sov. 

Phys. Tech. Phys. 1970 15, 175] when qedge, the safety factor at the outermost closed flux 

surface, lies just below a rational value 

€ 

m n . Experimentally, external kink modes are 

observed in limiter configurations as the current in a tokamak is ramped up and qedge 

decreases through successive rational surfaces. For qedge < 2, the instability is always 

encountered and is highly disruptive.  However, diverted plasmas, in which qedge is 

formally infinite in the MHD model, have presented a longstanding difficulty since the 

theory would predict stability, yet, the disruptive limit occurs in practice when q95, 

reaches 2. It is shown from numerical calculations that a resistive kink mode is linearly 

destabilized by the rapidly increasing resistivity at the plasma edge when q95 < 2, but qedge 

>> 2.  The resistive kink behaves much like the ideal kink with predominantly kink or 

interchange parity and no real sign of a tearing component. However, the growth rates 

scale with a fractional power of the resistivity near the q = 2 surface. The results have a 

direct bearing on the conventional edge cutoff procedures used in most ideal MHD codes, 

as well as implications for ITER and for future reactor options. 

1. Introduction 

Disruptions of the plasma during the ramp of the current, leading to premature 

termination of the discharge, were observed early in tokamaks when the edge safety 

factor qedge passed through rational values qedge = m/n.  The instabilities were in the form 
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of a kinking of the plasma edge with a periodicity  in the toroidal direction and  in 

the poloidal direction.  The  instabilities and corresponding disruption could be 

avoided by reducing the rate of the current ramp.  However, the m/n = 2/1 mode at qedge = 

2 could not be avoided so that qedge = 2 set a definite limit to the total current. 

From considering a large aspect ratio cylindrical model with constant current 

density profile, the instabilities were identified by V.D. Shafranov [Shafranov 1970] as 

current-driven ideal magnetohydrodynamic (MHD) kink modes that are strongly peaked 

at the plasma edge. Later modelling by Wesson [Wesson 1978] showed that a diffuse 

current density profile is partly stabilizing and that the higher m modes could be 

stabilized if qedge is sufficiently far from the corresponding rational.  Nonetheless, the 2/1 

mode always remained unstable, consistent with the experimental observations. 

Numerical calculations in full toroidal geometry and shaped cross section confirmed 

this picture. The theory explained current ramp disruptions extremely well for tokamaks 

with a well-defined edge set by material limiters, and in particular the hard limit at qedge = 

2. The ideal external current driven kink instability occurs in ranges of qedge , 

€ 

(m −1) < nqedge
crit < nqedge < m ,          (1) 

with 

€ 

qedge
crit  dependent essentially on the current density gradient in the edge region 

[Turnbull 1989a, Huysmans 1993]. A slower current ramp with higher qedge / q0 avoids 

the unstable regions and early limiter low β discharges in DIII-D were subsequently 

found to be consistent with this picture [Turnbull 1989a, Turnbull 2005].   

However, with the development of large tokamaks with poloidal magnetic divertor 

boundaries [Meade 1981, Bol 1985], the edge q becomes mathematically infinite and the 

ideal theory would predict no ideal instability.  Nevertheless, higher (m,n) disruptions  

continued to occur in experiments during sufficiently fast current ramps (usually only n = 

1 disrupted, however), and the ultimate 2/1 mode was observed empirically when q at the 

95% poloidal flux surface, usually denoted q95 , reached 2.0.   

While the reason is not understood, q95 in diverted plasmas has been found to play 

the same role that qedge plays in limited plasmas. Various explanations have been 
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proposed over the past years but none appear to be very satisfactory.  For example, an 

obvious resolution is that the 95% flux surface is the real boundary of the plasma – that 

outside of this there is little current or pressure despite the closed flux surfaces.  In that 

case, the observed mode would still be essentially an ideal kink mode.  Alternatively, it is 

commonly supposed that the unstable ideal kink is converted to a resistive tearing mode 

[Wesson 1987, Medvedev 2006] as the rational surface in the vacuum moves into the 

plasma.  However, there is finite current and pressure in the edge region, at least to the 

edge of the pedestal, which is generally outside q95.  The current density and pressure 

outside the 95% surface is quite significant in H-mode discharges. This is difficult to 

reconcile with q95 being the effective plasma edge. For the tearing mode explanation, 

those instabilities are normally much more slowly growing than ideal kinks and are 

generally manifested as islands rotating and growing in the plasma, and then locking to 

the wall before disrupting.  In contrast, the disruptions in divertor discharges as q95 passes 

through rational values are fast growing, with ideal-like growth rates (slowed usually by 

the nearby resistive wall), and do not exhibit any obvious island structure. 

The conventional ansatz consisting of the substitution of q95 for qedge appears to hold 

well in all cases where it has been carefully tested. More generally, no definite 

contradictions are known where q95< 2 in a stable free boundary discharge (although with 

stronger shaping and low aspect ratio, q95= 3 can present a limit before q95= 2 is reached 

[Turnbull 1989a]). The present paper provides an alternative explanation in the form of a 

hypothesis backed by numerical calculations from the MARS linearized MHD code 

[Bondeson 1992].  The observed instability in the diverted case is proposed to be due to 

destabilization of an external resistive kink mode as a result of the rapidly increasing 

plasma resistivity in the outer regions near the separatrix. 

Fusion power in a magnetic confinement device scales with increasing plasma 

pressure according to 

€ 

Pf ~ β
2B0

4 ,          (2) 
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where B0 is the toroidal magnetic field strength at the center of the plasma and 

€ 

β ≡
µ0 p

B0
2 .  

€ 

p  is the volume averaged plasma pressure.  In the absence of a 

stabilizing wall, β is well known to be limited by MHD stability, as expressed by the 

Troyon Limit [Troyon 1984] 

      (3) 

Here, a is the minor radius, I is the total plasma current, and 

€ 

cT  is the numerical Troyon 

coefficient found from stability calculations and confirmed experimentally to be typically 

in the range 

€ 

2.5 ≤ cT ≤ 3.5 if β is expressed in percent. Thus, 

€ 

cT  is the normalized , 

usually denoted . The function S (ε,κ,δ,…) is a shape factor depending on inverse 

aspect ratio , elongation κ, and triangularity δ, and relatively weakly on higher 

order shaping [Lazarus 1997].  In Eq. (3), q* represents a value for the “edge” safety 

factor (not to be confused with the ‘cylindrical’ safety factor, also commonly denoted as 

q*   [Friedberg1987]).  In a limiter discharge, this is qedge , but in a diverted discharge this 

is usually taken to be q95.  In either case, fusion power is ultimately maximized with the 

strongest shaping and at the lowest q* . 

An alternative strategy to increasing β through optimizing S and q* is to invoke 

stabilization from a nearby conducting wall.  For a real resistive wall, this needs to be 

supplemented by active magnetic feedback on the time scale of the resistive decay of the 

wall image currents to suppress the remaining slowly growing resistive wall mode 

(RWM) [Freidberg 1987, Zakharov 1987].  Alternatively, plasma rotation coupled to 

resonant kinetic stabilizing effects can provide at least partial stabilization [Strait 1995, 

Garofalo 1999, Sabbagh 2006, Chu 2010]. Invoking wall stabilization effectively 

increases the Troyon coefficient 

€ 

cT , or βN. Active feedback stabilization schemes for 

suppressing the residual pressure-driven RWMs have been developed in both tokamaks 

and reversed field pinch (RFP) experiments [Chu 2010] and wall stabilization has now 

been demonstrated many times showing steady operation with βN above the so-called ‘no-

wall’ or ‘free-boundary’ limit – the limit predicted with no wall stabilization – in DIII-D 
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[Strait 1995, Garofalo 1999, Okabayashi 2002, Strait 2003] and other experiments 

[Okabayashi 1997, Ishida 1997, Hender 2004, Sabbagh 2006, Chu 2010]. 

The limit at qedge = 2 from current driven external kinks, presents a comparable 

obstacle to increasing β through increased current.  Earlier experiments tried to exceed 

this current limit using a resistive wall to slow the mode growth [Stambaugh 1988, Chu 

2010].  However, they were ultimately terminated by the growth of the subsequent 

current-driven RWM [Chu 2010]. Feedback stabilization of the current-driven external 

2/1 kink was first successfully demonstrated in the Reversed Field Pinch (RFP) RFX-

mod [Martin 2009], operated as a tokamak. In the RFX-mod experiment, which 

employed 192 active coils, stabilization of the m/n = 2/1 ideal external kink was achieved 

through wall stabilization to slow the mode growth to a resistive wall time, in 

combination with active feedback of the subsequent RWM [Piovesan 2014].  The 

relatively low β discharge was operated with qedge decreasing below 2.0 during the 

current ramp to values of the order of qedge = 1.6.  The experiments were subsequently 

reproduced in DIII-D in both limited and diverted discharges [Piovesan 2014, Hanson 

2014, Martin 2014] using the full diagnostic suite available in DIII-D. 

The experiments in the limited cross section in DIII-D reached just below qedge ~ 2.0 

and the experiments in the diverted cross sections reached below q95 ~ 2.0.  With no 

feedback, both discharge types disrupted violently due to the fast-growing 2/1 mode.  

With active feedback, the discharges could be maintained stably for many resistive wall 

decay times, though in all cases, control was ultimately lost [Piovesan 2014, Hanson 

2014] due to technical limitations on the available power supplies. 

In interpreting the DIII-D experiments, the role of q95 becomes an acute issue. Ideal 

MHD has historically been absolutely successful in predicting the limit for limited 

discharges. In contrast, ideal MHD stability theory fails completely in predicting the 

observed instability for the diverted discharges with q95 < 2.0 and qedge >> 2.0. This is 

also clear from the simple application of the Shafranov theory, from previous numerical 

studies, and is well confirmed in the present study. The subsequent analysis of the DIII-D 

experiments is consequently incomplete since no valid stability analysis is possible. 
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Clearly, an explanation is needed: apart from the 1/1 external kink when q < 1 

everywhere [Shafranov 1970], the 2/1 ideal kink mode is the most gross instability 

possible, yet the ideal theory, which places the ideal plasma – vacuum transition at the 

diverted separatrix, fails to predict it at all in a diverted cross section.  The present paper 

addresses this issue directly using data from the experiments in DIII-D.  A new, though 

straightforward hypothesis is proposed and supported using numerical calculations.  In 

ideal theory, the sharp transitions in stability as qedge passes through rational values are a 

manifestation of the idealized sharp transition in resistivity from zero to infinity assumed 

between the perfectly conducting confined plasma and the external infinitely resistive 

vacuum.  In reality, of course, the very edge of the confined plasma region is highly 

resistive, with a resistivity profile η varying with the electron temperature Te as η ~ Te
-3/2.  

This yields typically a steeply rising profile within a narrow region from somewhere 

outside the 95% flux surface up to the last closed flux surface.  The hypothesis then 

proposes that when the q = 2 surface falls in the highly resistive edge region, the ideal 

kink that would be unstable if the q = 2 surface were in the vacuum is converted to a 

resistive kink.  Essentially, the high resistivity in the edge region appears like a vacuum 

as far as the kink instability is concerned. 

In a systematic study of the complex resistive MHD spectrum in generic tokamak 

equilibria [Huysmans 1993], the resistive external kink was considered as an explanation 

for observed kink modes in a variety of situations.  In that work, the plasmas were limited 

and the resistivity profile was generally kept constant across the plasma. The present 

work is intended to focus specifically on the diverted plasma case under experimental 

conditions where the discrepancy with ideal MHD theory is most dramatic. Nevertheless, 

the results are qualitatively consistent with those obtained by Huysmans et al. 

In the present work, a definite distinction is made between a tearing mode and a 

resistive kink.  The two have distinctly different parity at the rational surface – the kink 

has interchange parity where the two adjacent surfaces interchange, as opposed to tearing 

apart.  In practice, at finite β, the exhibited instabilities will have some mixed character. 

In Huysmans et al., [Huysmans 1993], the instabilities tended to be a mixture of tearing 

and interchange parity but, depending on qedge, one parity was often dominant. In the 
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results here for the 2/1 external kink, the interchange parity is completely dominant. The 

resonant components of the displacement peak near the q=2 surface, so that the 

neighbouring surfaces are interchanging (the peak moves faster than the neighbouring 

surfaces), instead of changing sign as is the case for a tearing mode where the rational 

surface tears apart. It is in this sense that the instabilities are referred to as resistive kinks. 

The analysis is based on data obtained from the DIII-D low  experiments, and 

using equilibria reconstructed from the available diagnostic data.  Section 2 discusses the 

experiments briefly, focusing specifically on the aspects of interest here, including the 

equilibrium reconstructions. The analysis is restricted to the n = 1, m = 2 mode and the 

q = 2 limit since good data is available from the experiments but the results are expected 

to be broadly applicable to higher n and m.  More important, the analysis is for L-mode 

plasmas, again since good quality data was available for comparison.  Nevertheless, it is 

expected that the results should generally apply in H-mode as well.   

The stability calculations are described in Section 3. The strategies that have been 

developed for dealing with the diverted outer surface are reviewed in Section 3.1. The 

calculations for the limited discharge are described in Section 3.2, where it is shown that 

ideal MHD works well, though with one minor discrepancy that can, in fact, be explained 

within the context of the model. Section 3.3 describes the stability calculations for the 

diverted case.  In all cases considered, the calculations that include the q = 2 surface 

within the plasma predict stability to the  external kink. Including a resistivity profile 

is shown to yield an ideal-like instability.  Three different models for the profile are 

considered.  The result is somewhat sensitive to the resistivity and some enhancements 

near q = 2 are generally found to be necessary if otherwise realistic profiles are assumed. 

Section 4 provides a general discussion. In light of the results from Section 3, 

several interesting aspects are worth commenting on. Most notably, the results can also 

explain the previously puzzling observation [Piovesan 2014, Hanson 2014, Martin 2014] 

that the instability in the limited discharges actually appears slightly before the discharge 

reaches qedge = 2. A detailed discussion of this is provided in Section 4.1. The scaling 

with resistivity is treated in Section 4.2. Justifications for the modifications are given in 

Section 4.3. Section 4.4 then discusses the credibility of alternative explanations; section 
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4.4.1 discusses the possibility of tearing modes in the experiments and the complications 

from internal kink and other ideal instabilities are dealt with in Section 4.4.2. 

Final concluding remarks are made in Section 5. Section 5.1 discusses some open 

questions and future directions that could be pursued. Finally, the work has interesting 

implications for projections of ITER performance based on scaling with q95. These 

speculations are considered in Section 5.2. 

2. Low q Operation in DIII-D 

The results from the DIII-D low q experiments have been reported extensively from 

the point of view of the feedback stabilization [Piovesan 2014, Hanson 2014]. To 

summarize these aspects briefly in order to provide context for the work here, several 

discharges with low edge q were produced over several days of runtime, and covering 

Limiter L-mode, Diverted L-mode, and Diverted H-mode conditions; in comparison, the 

original RFX-mod experiments were done in Ohmic conditions.  Feedback stabilization 

was successful under L-mode conditions but the Diverted H-mode discharges were only 

successful in reaching q95 = 2 in two cases.  This was due essentially to operational 

constraints; sawteeth and ELMs typically appeared at the L-H transition well before low 

q was reached, and the feedback control system had difficulty discriminating this activity 

from the external kink so that ultimately control was lost. Even in the successful H-mode 

experiments, the data is complicated by the ELM activity. Since a direct one-to-one 

comparison can be made, the present analysis is therefore restricted to the L-mode 

diverted and limited discharges. The feedback aspects are also largely ignored and the 

focus is on the instabilities that appear under open-loop conditions.  

Figure 1 shows the time development of the L-mode Limiter cross-section DIII-D 

discharge #154907. The current and qedge are given in Fig. 1(a) and (b), showing qedge 
decreasing toward 2.0 until the 2/1 mode onset at 2425 msec and the subsequent 

complete disruption at 2700 msec.  The 2/1 precursor to the disruption is not always 

observed, nor is usually so prominent as in this case.  The mode rotates in the electron 

diamagnetic direction (opposite the plasma rotation direction). The precursor magnetic 

signals are displayed in Fig. 1(c) on an expanded scale.  This shows the perturbed 

poloidal field from 50 poloidal field probes with the mode phase given by the dashed line 
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and the amplitude by the solid line (black) plotted on an exponential scale.  The growth 

time (dotted red curve) is found to be 1.8 msec, comparable to the wall resistive time of 

about 2.5 msec. The mode amplitude is also shown in Fig. 1(d) as colour contours versus 

time and toroidal phase. The mode has a clear 2/1 structure with all the usual features 

expected of the unstable ideal external kink.   

The discharge equilibria were reconstructed for times approaching the 2/1 mode 

onset using the EFIT code [Lao 1990] and fitted to all available external magnetic data, 

internal motional Stark effect (MSE) data, and kinetic pressure data from Thomson 

scattering and charge exchange recombination (CER) measurements. These were coupled 

with transport simulations to obtain the fast ion pressure from the ONETWO code 

[Pfeiffer 1980, St. John 1994]. Operationally in these discharges, the current is ramped in 

order to reach low  (

€ 

q* = qedge  or 

€ 

q* = q95). Current diffusion redistributes the inductive 

current into the core, thus lowering q everywhere. By applying a sufficiently fast current 

ramp, the discharge was designed to reach qedge = 2 before the onset of sawtoothing when 

the safety factor on axis 

€ 

q0 ≤1. This was intended to avoid the effects of sawteeth on 

confinement, and because sawteeth often trigger other instabilities, particularly 

neoclassical tearing modes (NTMs) [Sauter 2002].  In addition, feedback control could 

not always discriminate the 1/1 magnetic signals from the external kink. 

Nevertheless, sawteeth did often occur since the current ramp rate was limited in 

order to avoid triggering the higher n and m external kink modes, so that  was often 

reached before qedge = 2. To maintain  in the stability calculations and avoid the 

ideal internal kink [Shafranov 1970, Bussac 1976], a simple expedient of ignoring the 

radial electric field correction [Rice 1997] to the MSE data in the reconstructions was 

applied. This was usually sufficient to keep q0 > 1. However, this results in the 

reconstructions typically having an off axis minimum safety factor, qmin, with q0 > qmin > 

1.0, but still within the estimated experimental uncertainties. 

The reconstruction at 2425 msec is shown in Figure 2 with (a) the reconstructed 

boundary and flux surfaces and (b) the safety factor and (c) toroidal current density 

profiles. This reconstruction, right at the mode onset, yielded a value for qedge of qedge = 

2.08 ± 0.01. Note in particular, the slightly hollow q. Subsequent ideal MHD stability 
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calculations using the GATO code [Bernard 1981] for this equilibrium  found complete 

stability, consistent with qedge > 2.0. This was confirmed with the DCON [Glasser 1997] 

and MARS [Bondeson 1992] codes.  The DCON calculations show the positive perturbed 

energy decreasing uniformly as the mode onset time is approached [Hanson 2014], 

indicating the approach to an ideal instability. 

To obtain a later equilibrium from the early mode onset phase when qedge < 2.0, 

reconstructions were made by extrapolating the profiles forward in time to higher current 

but using the plasma boundary from 2425 msec. This yielded equilibria with decreasing 

qedge, and for a small but significant extrapolation, equilibria similar to that in Fig. 2 were 

obtained with qedge ~ 1.95 for ideal stability analysis with the GATO code [Bernard 

1981]. A slightly different procedure was also employed whereby the original 

equilibrium at 2425 msec was recomputed as a fixed boundary inverse equilibrium using 

the CHEASE code [Lutjens 1996], slightly cut off to remove the X-point, with the same 

profiles but with 

€ 

I  readjusted to set .  The two schemes yielded similar results.  

The extrapolated profiles for the limiter discharge #154907 with  are 

also shown overlaid in Figure 2(b) and 2(c).  Compared to the reconstruction at 2425 

msec (solid curves), the extrapolated q profile (dashed curve) is similarly slightly hollow 

but with the minimum further out in radius. The profile extrapolation procedure tended to 

produce equilibria with even more hollow q profiles than the original. The minor 

complications that consequently arise in the analysis and interpretation of the results will 

be discussed in some detail in Section 4.  Nevertheless, the results can reproduce the 

observed ideal instabilities. The only significant difference between the profiles in Fig. 2 

is the edge q below 2.0 in the extrapolated equilibrium. 

The diverted L-mode discharge #150513 similarly underwent a fast 2/1 disruption 

but at q95 = 2.  Figure 3 shows the time trace for this discharge for comparison with 

Fig. 1, with I ramped up and q95 dropping to q95 = 2. In this case, there was no 

discernable oscillating magnetic precursor to the instability onset.  Figure 4 shows the 

reconstructed equilibrium at 2340 msec, just before the observed mode onset. The major 

difference compared to Fig. 2 is the upper single null (USN) divertor shape.  The 
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differences in the profiles are largely a result of this shape change.  Note that the 

reconstructed profiles in both limiter and divertor cases generally have a finite edge 

pressure gradient so there is always some current density on the last closed flux surface, 

even when the average over the surface is small. The finite edge pressure gradient is a 

measured feature present in the raw data. The gradient in the surface-averaged current 

density is also finite in most of the reconstructions. From the reconstruction for discharge 

#150513 at 2340 msec, q95 = 2.06.  As will be discussed later in Section 3.1, numerically, 

a finite value is found for edge with qedge ~ 5. 

Except for the lack of any obvious precursor, the disruption in discharge #150513 at 

2340 msec shows all the same features of the ideal kink disruption as in discharge 

#154907.  In particular, in both discharges, there is no sign of tearing at internal rational 

surfaces (q = 2 in the diverted case), no precursor mode locking, and the growth rates are 

consistent with the fastest resistive wall time, somewhat faster than a typical tearing 

mode.  With one caveat to be discussed in Section 4.4.1, there is also no clear evidence of 

temperature flattening indicative of island formation at onset or in the early growth phase. 

Nevertheless, in contrast to the limiter discharge #154907, ideal stability 

calculations for discharge #150513 find complete stability to the m/n = 2/1 external kink.  

For the reconstruction at 2340 msec, q95 = 2.06, which, as for discharge #154907, is 

slightly on the (experimentally) expected stable side of the marginal point, so the stability 

is not surprising.  However, even when the procedure of extrapolating the profiles 

slightly forward in time to yield equilibria with q95 < 2 was applied, the calculations 

continued to yield complete stability to the  external kink. With variations in the 

fitting, cutoff, and extrapolation procedures, the only unstable ideal modes found were 

internal kinks and very weakly unstable, highly edge localized,  peeling modes in 

narrow ranges of 

€ 

qedge . The stability calculations will be discussed in the next section.   

3. External Kink Stability in Limiter and Divertor Configurations 

The conclusion that ideal MHD works extremely well in the limiter case, yet fails 

completely for all plausible reconstructions in the divertor case rests on the validity of the 

equilibrium reconstructions and the subsequent ideal MHD stability evaluation.  These 
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generate several numerical issues that need to be addressed.  The key issue is the 

treatment of the singularity at the X-point of the diverted separatrix and will be discussed 

in the following subsection in detail. Also, the complications arising from coupling 

between the external kink modes of interest and the ideal internal kink will be discussed 

briefly at the end of Section 3.1 and later in Section 4.4. 

3.1 Numerical Issues 

The poloidal field at the X-point in a divertor configuration vanishes, leaving a 

saddle point in the poloidal plane and a purely toroidal field. No special behavior appears 

in the vicinity of the X-point in strictly two dimensions, though with 3D perturbations, 

the singular behavior is manifested as Hamiltonian chaos with a complex web of 

homoclinic tangles [Evans 2006].  Nevertheless, the X-point is a coordinate singularity 

and needs to be handled properly. Even though there seems to be no new (non-ideal 

MHD) physics associated with the singularity, it does present numerical difficulties for 

quantities such as q that involve surface integrals of .  In particular, for inverse 

equilibrium codes based on flux coordinates, such as the CHEASE code [Lutjens 1996], 

the Jacobian is usually singular (for example if an equal arclength poloidal angle is used) 

and the coordinate system can become highly distorted in the neighborhood of the X-

point (for straight field line coordinates).  For direct equilibrium codes such as EFIT [Lao 

1990], the singularity is less serious but still requires care. 

For stability codes based on a flux coordinate system, the singularity needs to be 

handled carefully.  Two schemes are usually employed – both essentially remove the 

singular point.  In the first approach, the plasma boundary is moved slightly inward so 

that the X-point lies outside the region considered as plasma.  This cutoff procedure is 

required in numerical calculations that use a Fourier representation in the poloidal angle, 

but has traditionally been deployed in different ways in different codes - the differences 

typically being whether the current density and pressure in the removed region are shifted 

back into the plasma to keep 

€ 

I  and β fixed, or are removed completely, and whether force 

balance is re-imposed on the modified plasma profiles. 
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The MARS [Bondeson 1992] and DCON [Glasser 1997] stability calculations use 

variations of this cutoff procedure.  The equilibria for MARS are recomputed with fixed 

current density, pressure and boundary shape using the inverse equilibrium code 

CHEASE [Lutjens 1996], whereas DCON can either use the CHEASE equilibrium or 

employ a simple cutoff of the edge current and pressure from the original reconstructed 

direct equilibrium. The resulting qedge is finite but the numerical value depends clearly on 

how much plasma is cut off.  For sufficiently small cutoffs, the different procedures 

usually result in negligible changes in the results and a consistent answer can be obtained.  

For larger cutoffs, where significant current density and pressure need to be redistributed, 

or where a low order rational surface is removed, the results are sensitive to the cutoff.  

The alternative procedure, used in the ERATO [Gruber 1981], GATO [Bernard 

1981], and KINX [Degtyarev 1997] codes, and also effectively in the M3D-C1 code 

[Ferraro 2010], utilizes a finite element representation in the poloidal angle.  With a 

suitable choice of Jacobian (e.g.with an equal arclength poloidal angle), the distortion of 

the poloidal coordinate lines in the region around the X-point is minimized.  Although the 

Jacobian is still singular at the X-point, the logarithmic singularity is weak and is 

manifested in surface integrands of the form , where l is the arclength.  

Discrete numerical integration then yields finite numbers for these divergent integrals if 

the singular point where  is not a grid point.  For example, in the case of the 

edge safety factor, 

€ 

q =
f
2π

Rdl
Bpol

∫ , 

€ 

f = RBφ( )  the numerical integration in the GATO 

code yields qedge ~ 5 for the EFIT equilibrium reconstructed from discharge  #150513 at 

2340 msec.  The finite value is, in fact, set largely by how close the 2D interpolation 

procedure can approximate the zero gradient in flux at the X-point rather than the 

fineness of the integration grid.  The M3D-C1 code also uses essentially the same 

method; it solves for the perturbed fields in the entire plasma plus vacuum region but 

avoids calculation of singular surface integrals.   

It should be emphasized that the explicit cutoff and the finite (approximate) 

numerical integration procedures are different.  The former explicitly either removes or 
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redistributes pressure and current but the latter does not. The effect of the explicit cutoff 

has been investigated systematically with KINX in a comparison of the two approaches 

[Medvedev 2001].  The conclusion from that work was that the results with no cutoff can 

be qualitatively different from those that employed an explicit cutoff.  A reasonable 

summary of the situation, consistent with the present and other studies, is that the cutoff 

matters each time it removes a significant rational surface from the edge.  While there 

are, of course, infinitely many rational surfaces in principle, only the very low order 

surfaces produce a significant instability.  For the low order surfaces, the difference 

between including the surface in the plasma and removing it is simply that the former is 

stable but the latter unstable to the corresponding m/n external kink. 

In the present case, it means simply that the q = 2 surface cannot be removed 

without an expectation that it will affect the stability. From sensitivity studies with 

respect to variations within experimental uncertainties in the edge profiles, no unstable 

ideal external kink instabilities with significant  could be found using the ideal 

GATO code for discharge #150513 using reconstructed equilibria. From studies of 

different cutoffs, it was found that the q = 2 surface must be removed in order to find the 

unstable ideal external 2/1 kink. However, this would require 5% of the plasma to be cut 

off.  Different cutoffs, provided they were less than a tenth of a percent of the poloidal 

flux, yielded consistent results except in the narrow ideally unstable 

€ 

qedge  ranges just 

below rational values.  As will be discussed in Section 4.4, these instabilities cannot 

easily explain the observed disruption.  In contrast, the MARS and DCON codes utilizing 

a cutoff of 0.3% provided by the CHEASE code find an edge q just below 3.  This might 

be expected to drive an edge 3/1 external kink or peeling mode but MARS and DCON, as 

well as GATO also find the equilibrium to be stable. Thus, the disagreement with the 

experimentally observed instability remains to be resolved. 

The second numerical issue is only a technical complication, though also with 

possible consequences in practice.  It applies in both the limiter and divertor 

configurations. As discussed in Section 2, the equilibria are reconstructed so that  

is maintained. The classic internal kink with  [Shafranov 1970, Bussac 1976] is 

then generally avoided.  The safety factor profile is then usually slightly nonmonotonic 
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and this tends to destabilize the ideal quasi-interchange mode [Wesson 1986] if 

€ 

qmin ≤1+ε  (ε ~ a/R).  In some of the equilibria used in the study, this internal mode is 

unstable. This is an independent purely 1/1 mode but can also couple to the external kink 

to produce coupled 1/1 and 2/1 modes at finite .  The external kink component of 

interest can become dominated by the internal 1/1 displacement since the 1/1 mode is 

easily excited to large amplitudes by a small energy imbalance.  The calculations have 

been repeated for a number of different reconstructions with varying q0 and qmin, and the 

external kink modes have varying contributions from the 1/1 component. The issue then 

is just interpretation; can the instability be characterized as a predominantly 2/1 mode 

rather than a 1/1 mode. The quasi-interchange can usually be eliminated by raising qmin 

further. Normally, the judicious selection of an appropriate equilibrium reconstruction or 

time slice with sufficiently high qmin is enough to ensure the 2/1 component is 

unambiguously dominant. 

The stability calculations are discussed separately for the limiter and divertor 

configurations in the following two sections.  The ideal calculations were generally 

performed using the GATO code, employing no cutoff, but a numerically discrete and 

finite integration on the diverted surface.  The ideal results were confirmed using MARS, 

DCON, and M3D-C1.  Resistive MHD calculations were performed using the MARS 

code.  Here, for the diverted case, an equilibrium recomputed from the CHEASE code 

was used with the boundary taken at the 99.7% poloidal flux surface, and the value qedge 

~ 2.85, well above 2.0, was obtained. The CHEASE equilibrium is shown overlaid in 

Figure 4 with the original reconstructed equilibrium. Although the cutoff did not 

destabilize the m/n = 3/1 ideal external kink, a significant and often dominant m = 3, as 

well as higher m harmonics, were always present in the resistive MHD calculations. This 

will be discussed. No cutoff was required in the limiter case except to artificially reduce 

qedge slightly to a value below 2. 

Several comments should be made regarding the stability calculations.  The ideal 

calculations with the GATO code generally assumed a wall at infinity since the aim is to 

show that no ideal mode is unstable in the diverted case.  On the other hand, the resistive 

MARS calculations assumed a resistive wall at the location of the DIII-D vacuum vessel 
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in order to reproduce the instability under experimental conditions. The wall time was 

taken to be 

€ 

2.78 ×104  plasma Alfven times, which is the standard value used for DIII-

D. This yields an actual resistive wall time of around 9 msec. Recent careful studies, 

however, have found this to be a factor two longer than the value that provides the closest 

match to the vacuum field decay time for n=1 fields [Hanson et al 2016] (the actual wall 

times depend weakly on the mode in question). While the actual growth rates are 

unimportant here, some calculations were nevertheless repeated with no wall to verify 

that the growth rates are ideal like. Finally, in all cases, the density was assumed constant 

for simplicity.  A profile in density changes only the growth rates, with a small effect on 

the mode structure.  Again, the magnitude of the linear growth rates is relatively 

unimportant here.  The effect on mode structure could make a difference in the 

experimental diagnostic comparisons, but, again, the effect should be small. 

3.2 Limiter configuration 

Ideal stability calculations using the GATO code for the reconstructed limiter 

discharge #154907 at 2425 msec with qedge = 2.08 found complete stability even with no 

stabilizing wall.  This was confirmed with DCON and MARS.  Variations in the detailed 

edge conditions also found stability unless the edge qedge was reduced below 2.0 from the 

best-fit value of qedge = 2.08.  This result is completely consistent with the ideal theory. 

The ideal n = 1 stability calculations were performed using GATO for the same 

discharge #154907 at a slightly extrapolated time, where qedge = 1.95.   The extrapolation 

was performed by projecting the profiles to slightly higher current, while keeping the 

remaining data to be fitted, including the plasma boundary, unchanged. With a perfectly 

conducting wall on the plasma the equilibrium is unstable to an internal m = 1 quasi-

interchange mode due to the slightly hollow  profile.  With no wall, a pair of unstable 

ideal free boundary modes was found. Figure 5 shows the two modes.  Plotted is the 

Fourier decomposition of the normal displacement  with respect to the PEST 

straight field line angle χP, as a function of , with  the normalized volume 

contained within a given flux surface. The real and imaginary parts are different since the 

equilibrium is vertically asymmetric but both show m = 1 coupled to a significant m = 2 
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component with different phases. Note also the different scales between (a) and (b) and 

between (b) and (c); the overall amplitude for each independent eigenmode is arbitrary, 

however. The respective no-wall growth rates are  and (

 
is the Alfven time, with  the mass density). The  external kink is 

destabilized when the wall is removed and couples to the quasi-interchange to produce 

two separate independent linear combinations of the external and internal modes. The 

relative contributions from the coupled  and  system depend on the reconstruction 

details but the m/n = 2/1 kink component is the driving instability of the external mode. 

The presence of multiple harmonics and the inclusion of a sizeable m = n = 1 

component are inessential details for the purpose of identifying the disruption cause. 

Slightly different extrapolation procedures also yield different mixes of poloidal 

harmonics but all have an m/n = 2/1 external kink coupled to an m/n = 1/1 internal kink. 

The key point is that the predicted instability is consistent with the observed disruption to 

within a small margin of error.  

The MARS code, running under ideal MHD conditions, reproduced the external 

m/n = 2/1 kink with qedge < 2, utilizing an equilibrium from the CHEASE code [Lutjens 

1996], that was obtained from the initial EFIT reconstruction at 2425 msec but with a 

slightly increased total current chosen to reduce qedge to qedge = 1.995. The calculations 

again found a linearly unstable 2/1 mode.  In this equilibrium, the internal m/n = 1/1 

quasi-interchange was stable and only one unstable external mode was found. Figure 6(a) 

shows the measured signals from the external magnetic probes located at the wall at  

msec.  A synthetic diagnostic prediction of these signals was made [Hanson 2014] using 

the result from the MARS code [Bondeson 1992] with no wall and is replicated in Fig. 

6(b). The observed 2/1 structure of Fig. 6(a) is well reproduced. 

The conclusion for the limiter discharge, #154907 is, as expected, that ideal MHD 

stability predicts the onset of the 2/1 external kink mode at qedge = 2.0, close to the 

observed onset at qedge = 2.08. Analysis of similar discharges in the same series finds 

essentially identical behavior. The predicted ideal kink mode structure also agrees well 

with the external magnetic signals for this discharge and the growth rate is consistent 
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with an expected 2/1 ideal MHD mode growing on the resistive wall time scale.  One 

apparently minor point is the estimated onset actually appears to be slightly above 

qedge = 2.0, outside the estimated experimental uncertainty [Hanson 2014, Martin 2014].  

While unaccounted for systematic errors could be present, it does hint that some non-

ideal effects might also be important in the limiter cases.  Nonetheless, the ideal kink is 

predicted to be unstable very close to the time when the mode is detected experimentally. 

3.3 Divertor configuration 

Ideal MHD stability calculations for the diverted discharge #150513 at 2340 msec 

found complete stability.  Different extrapolation and cutoff procedures yielded different 

values for 

€ 

qedge . The GATO calculations used the EFIT equilibrium with no cutoff but 

with a numerically calculated edge  of .  The DCON and MARS codes used the 

equilibrium recomputed as an inverse equilibrium from CHEASE with the cutoff of 0.3% 

in poloidal flux, yielding , but confirmed the complete stability to external 

kink modes.  An ideal quasi-interchange, however, is unstable that, although irrelevant, 

does result in complications that will be discussed. The M3D-C1 code also used no cutoff 

and extended the calculation smoothly through the vacuum, with a sharp resistivity 

transition at the separatrix.  This also found complete linear stability. Overall, no external 

kink instabilities were found with moderate variations in the edge profiles as long as 

€ 

qedge > 2  and 

€ 

qedgewas kept from the narrow peeling instability ranges associated with the 

higher rational surfaces. Obtaining 

€ 

qedge ≤ 2  requires an unjustifiable 5% cutoff. 

Ideal  instabilities do appear in small ranges of 

€ 

qedge  near rational values, 

€ 

qedge
crit < qedge < m , as predicted [Shafranov 1970].  However, the instabilities for 

€ 

m ≥ 3 

consist of a single almost pure , are highly localized, and have very low growth rates.  

An example is shown in Figure 7 for the m = 3 peeling instability obtained directly from 

extrapolating the profiles to 2350 msec and applying a small cutoff, for which 

. The almost pure m = 3 mode is localized strongly to the last few surfaces.  It 

is also only very weakly unstable with  with no wall. As will be discussed 

later in Section 4.4, the narrow ranges of plasma current where the mode is linearly 

unstable are difficult to reconcile with the observed instability time development. 
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The simplest explanation is to invoke non-ideal effects.  The issue here is that non-

ideal effects are generally small perturbations on ideal MHD and this seems inconsistent 

with the observed large growth rates of the instabilities.  Finite resistivity offers the most 

promising option.  To obtain sufficiently large growth rates, the resistivity cannot be a 

small perturbation as it usually is in the core of the plasma.  However, the edge does have 

large resistivity in a narrow region inside the last closed flux surface.  The hypothesis 

then is that the resistivity only needs to be sufficiently large in the edge region near  

in order to produce a fast-growing, edge-peaked external kink.  The MARS code offers 

an opportunity to explore this. 

The resistivity profile is not generally measured in tokamaks.  Instead, the resistivity 

is usually either taken from a model such as the Spitzer formula [Spitzer 1962] or later 

improvements to include neoclassical effects [Sauter 1999], or is inferred from transport 

simulations [St. John 1994].  The Spitzer model is implemented in the MARS code as 

 ,      (4) 

where  is an input constant, ( , the ratio of the resistive diffusion time to 

the Alfven time, is the Magnetic Reynolds, or Lundquist number), Te is the local electron 

temperature and 

€ 

T0 ≡ Te 0( ) .  Te is measured from Thomson scattering and the profile is 

shown in Figure 8(a). The data in the core from this time is poorly calibrated and ignored 

but the edge temperature data is reliable; a detailed discussion of the data quality is 

provided in Section 4.4.1 in the context of identifying possible resistive tearing modes in 

the plasma. The corresponding normalized resistivity profile is shown in Figure 8(b). 

Also overlaid in Figure 8(b) are the Sauter and ‘effective’ profiles to be discussed later. 

A cap, ηmax , to the edge value, traditionally set at 100 times the core value, is 

applied in the code.  This can crudely model some neoclassical corrections [Sauter 1999] 

and avoids numerically localized singular spikes right on the last surface.  These are 

unphysical and are generated by the several decade variation in η over the last few grid 

points as  ( ).  For our purposes, the default cap is often too low and so was 

varied over a range, determined only by when physically real modes were obtained. 
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In addition, numerical issues in MARS require that  at the magnetic axis.  

This has no effect on the results here since the aim is to find an instability from the large 

edge resistivity.  In fact, with later modifications to the profile to be discussed 

subsequently, the resistivity was sometimes forced to vanish faster in the core than in Eq. 

(4).  Finally, additional options exist in the code to crudely model the effect of trapped 

particles, as contained in the Sauter model.  However, except for the cap, these were 

ignored and the Sauter model was obtained independently from ONETWO transport code 

modelling [Pfeiffer 1980, St. John 1994].  

The stability calculations performed for discharge #150513 for the ideal case with 

the MARS code were repeated using the Spitzer resistivity profile in Eq. (4) with varying 

.  For , no instability was found.  For  and , external kink-

like solutions were obtained and are shown in Figure 9. These were obtained with caps of 

 for  and  for .  The real and imaginary parts 

of the poloidal fourier decomposition of each of the modes are shown. In both cases the 

m = 2 component is large and is maximized at the q = 2 surface for both the real and 

imaginary parts. There is also a significant m = 3 component peaked at the edge and some 

m = 1 is also present in the core. In Figures 9 (c) and (d), the singular higher m are also 

present at the edge. These are eliminated with a lower cap (

€ 

ηmax < 50η0 ) and a 

corresponding small reduction in growth rate. The resistive kink modes have a finite real 

frequency due to the resistive wall and resistive plasma. For  the complex 

growth rate, normalized to an inverse Alfven time, , is 

€ 

γ + iω( )τA = 0.0844 −0.00928i , 

and for , 

€ 

γ + iω( )τA = 0.0568 + 0.00203 i . With no wall, these become 

respectively

€ 

γ + iω( )τA = 0.1371−0.00429i, and 

€ 

γ + iω( )τA = 0.1342 − 0.00360 i .  The 

mode structures are largely unchanged. 

These are ideal kink level growth rates and the instabilities are kink-like with no 

sudden phase changes, characteristic of tearing, at the rational q = 2 surface.  Note also 

that the resistive wall does slow the modes but the growth rates remain ideal-like.  For 

now, they are referred to as resistive kink modes, since, even though the scaling with η is 
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not determined at this point, they clearly exist only because of the finite resistivity. The 

scaling with key characteristic resistivity values will be considered later in Section 4. 

One point of possible contention should be addressed before proceeding.  The 

modes in Fig. 9 have an m = 2 component that is not peaked at the edge, but in fact turns 

over at the q = 2 surface.  This is in contrast to the ideal external kink mode calculated for 

the limiter discharge #154907 where the m = 2 amplitude increases fairly monotonically 

toward the edge (Fig. 5).  The m = 3 harmonic is peaked at the edge in Fig. 9 and, 

according to the usual experimental categorization of selecting the largest poloidal 

harmonic in the diagnostic signals, one might be tempted to classify the instabilities as m 

= 3 rather than m = 2 external kinks.  However, the m = 2 harmonic must peak near the q 

= 2 surface.  This is the signature of kink or interchange parity. It only peaks at the edge 

when the q = 2 surface lies in the vacuum. In the diverted case there are always 

corresponding higher m components up to , where  is the integer 

part of qedge.  Variations in the profile parameters  and ηmax find 

considerable sensitivity of the ratio of the m = 2 to m = 3 peaks. Note that the m = 2 peak 

is dominant at least for the case with . The identification of the mode with a 

given single m makes sense, however, when comparing the signals measured on the 

external diagnostics.  This will be considered later in Section 4.   

Efforts to find resistive external kink instabilities for this equilibrium at lower core 

resistivity, , with the Spitzer profile were unsuccessful. Keeping the cap ratio 

 fixed while  is reduced tended to result in only stable predictions, whereas 

lower , with a fixed cap value , tended to yield only internal m = 1 quasi-

interchange-like modes. For sufficiently low , increasing  tends to produce the 

spurious singular edge ‘peeling-like’ modes, usually , and localized on the last one 

or two surfaces at the edge. This is known behaviour for the MARS code and is one 

reason the cap is imposed; these spurious  are even more singular at the edge than 

the weakly unstable ideal peeling mode in Figure 7. 

Given that no external modes were found for , in the context of the 

hypothesis that the resistivity in the edge region destabilizes the mode, the resistivity at 
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q = 2 is expected to largely determine the mode onset condition.  From the calculations, 

this onset value is found to be of the order of  in dimensionless 

inverse Lundquist number units. For the Spitzer profile, 

€ 

ηq=2 ~ 50η0. To reach values of 

 using the Spitzer profile, the  values required 

€ 

η0 ~
ηq=2

50 > 0.2 ×10−5, are 

then much larger than the experimentally expected core resistivity values. 

The program to explain the observed instability as a resistive kink, requires  to be 

reduced to more realistic values of order 

€ 

η0 ~ 10
−6, to 

€ 

η0 ~ 10
−8or so, while maintaining 

sufficiently high  near q = 2.  Two strategies were tried.  First, the profile in  was 

modified to drop faster at the axis, making it essentially zero in most of the core.  Second, 

a bump was introduced in the profile at q = 2 to maintain  as  is reduced.  In 

addition, as mentioned, the edge resistivity cap ratio  was increased as  was 

reduced to maintain , while avoiding spurious singular modes right at the edge. 

Several justifications will be given for this procedure in Section 4. 
The resistivity profile was accordingly modified from the Spitzer form in Eq. (4) by 

including two form factors, 

€ 

sα  and 

€ 

f s( ) , so that 

€ 

η = sα f s( )ηSpitzer =η0
Te
T0

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
− 32

sα f s( ) ,          (5a) 

with 

€ 

f (s) =1+ A0exp
− u − u*( )2

w2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .          (5b) 

Choosing  forces the profile η(s) to vanish quickly in the core.  Here, 

€ 

s = ψ , with 

€ 

ψ  the poloidal flux, is the radial coordinate employed in the MARS code.  The Gaussian 

bump f (s), on the other hand, allows an enhancement to  near  by a 

factor  with width w.  The parameter u(s) is simply a stretching coordinate, 

, used to squeeze the Gaussian more rationally within the steep edge 

region. Then  is usually taken in the vicinity of q = 2 or q95. 
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Figure 10 shows the modified profile (dashed blue curve) for  with , 

, ,  (i.e. at q=q95), and .  This is shown in 

comparison to the unmodified Spitzer profile with  (solid blue curve). The 

major effect of the Gaussian bump is to move the steep edge region inward; a quite large 

change in the local magnitude of  corresponds to only a small radial shift inward.  

The results of a calculation with  but including this moderate enhancement 

at q = 2 are shown in Figure 11(a) and (b).  Comparing with Fig. 9(c) and (d), the 

Gaussian bump has significantly increased the relative amplitude of the m = 2 peak. The 

growth rate is also increased by about 50% to . Figures 

11(c) and (d) shows a similar successful calculation for , in this case with , 

, , , and . With a resistive wall, the growth rate 

is .  Here, there is a large m = 1 in the core in addition to 

the m = 2 peak and the m = 3 ‘peeling’ component. The parameters for the Gaussian 

modification were selected to minimize this m = 1 component and maximize the m = 2 

harmonic with a moderate value for the amplitude , and the modified resistivity profile 

is shown as the dotted red curve in Figure 10.  For , the m = 1 component was 

present in most of the calculations that revealed an unstable numerically resolved 

instability. Taking  tended to reduce but not eliminate the m = 1 component. 

The calculations were repeated using the Sauter model for the resistivity profile and 

for an ‘effective’ resistivity profile obtained from transport simulations for this discharge.  

The Sauter formula [Sauter 1999] is given by 

,      (6a) 

with the effective trapped particle fraction given in terms of the charge state  and the 

actual trapped particle fraction  by 
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€ 

feff ≡
f t

1+ν*
1
2 0.55 − 0.1 f t( )+ 0.45 ν*

Zeff

3
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 1− ft( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

.        (6b) 

The ‘effective’ resistivity is calculated using the ONETWO  transport code [Pfeiffer 

1980, St. John 1994] from the Ohms Law relation between the parallel electric field  

and current density , 

,                     (7a) 

where  is obtained from Faraday’s Law using successive equilibrium reconstructions 

at two different times 

.             (7b) 

Here, R is the major radius,  is the loop voltage, and  is the toroidal 

electric field (

€ 

B and 

€ 

Bφ  are the total magnetic field and toroidal component, 

respectively).  The parallel current  is then extracted from the equilibrium 

reconstruction for the total current density at an intermediate time, after subtracting the 

non-Ohmic contributions. 

The unmodified profiles for the three models are compared in Figure 8 (b). These 

are shown on both linear and log scales against the square root of the volume, which is 

close to the toroidal flux variable in Fig. 8 (a). The Sauter and ‘effective’ models include 

a pedestal at the inside foot of the steep gradient region that is not present in the simpler 

Spitzer model.  The ‘effective’ profile is a little broader but all three are similar.  While 

the ‘effective’ profile is subject to fairly large uncertainties since it is derived from a time 

difference of two full equilibrium reconstructions, the profile is nevertheless consistent 

with the others. 

MARS calculations for the divertor discharge #150513 using the unmodified Sauter 

and ‘effective’ profiles from Eqs (6) and (7) yield weakly unstable and poorly resolved 

resistive kink instabilities.  Only a small enhancement following Eqs (5) is needed to 

obtain clear, well-resolved m = 2 kink-like unstable modes in this case.  Figure 12 shows 
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the resulting instability for one of the modified Sauter profiles, chosen because it revealed 

the clearest m = 2 solution with the least enhancement, namely with , , 

, , and . For the Sauter profile, 

€ 

η0 =1.1×10−6 . The 

complex growth rate with the wall in this case is 

€ 

γ + iω( )τA = 0.0631− 0.00385 i , and 

with no wall 

€ 

γ + iω( )τA = 0.1309 − 0.00462 i . The m = 2 structure is clear, again with no 

sign change associated with tearing at the q = 2 surface.  The inset to Fig. 12 shows the 

resistivity profile used, overlaid with the original Sauter profile. The modification is 

visible in this case as an actual bump just outside q = 2 but well inside the edge.  The 

main effect, as in the Spitzer case, however, is to simply move the steep gradient inward. 

The calculations were repeated for two of the modified ‘effective’ resistivity 

profiles.  Again, the enhancements needed were relatively small, at least in terms of the 

shift in the steep gradient region.  Figure 13 shows the results.  In Fig. 13 (a) and (b), the 

modifications to the effective profile were taken as , A=10, , , 

and . From the transport modeling, ; the resistivity profile is 

shown in the inset to Fig 13 (a).  This was again selected as having the clearest m = 2 

structure and in this case, . With no wall, 

€ 

γ + iω( )τA = 0.1602 − 0.00428 i .  A second case, shown in Figs. 13 (c) and (d), with 

, A=2, , , and , was chosen as having the 

smallest modification but a clear 2/1 resistive kink instability with 

 for the resistive wall calculation and 

€ 

γ + iω( )τA = 0.1041− 0.00485 i  for the no wall case.  In both, the structure is well 

resolved and quite similar to the Sauter case in Fig. 12. 

Figure 14 (a) shows the measured magnetic signals obtained from the poloidal field 

probes on DIII-D at the wall for this discharge at the onset of the 2/1 instability.  This 

shows contours of the perturbed poloidal field at the wall location in poloidal – toroidal 

angle space.  For discharge #150513, the full internal poloidal magnetic array was not 

installed and only signals from the outboard side are available.  However, saddle loops 

outside the vacuum vessel show a mixed m = 2 and m = 3 structure (Figure 14 (b)). The 
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fourier decomposition using this restricted domain indicates that the m = 3 is slightly 

more dominant; the m = 2 comprises 31%, whereas the m = 3 comprises 38% with most 

of the rest m = 1.  Figure 14 (c) shows the magnetic signal from a later but similar 

discharge #154805, where the inboard magnetic diagnostic was installed.  The outboard 

signal is similar to that for #150513 in Figure 14 (a).  However, the full internal 

diagnostic array shows structure on the inboard side and the best fit to the mode is m = 2. 

The predictions for these signals are shown in Figs. 15 (a), (b), and (c) for the Sauter 

case of Fig. 12 and the two ‘effective’ resistivity cases of Figure 13.  The predictions 

from all three cases are similar and match well with the measured data in Figure 14.  In 

particular, the 2/1 field structure is clearly visible.  This is despite the predicted modes 

typically having a dominant m = 3 component inside the plasma and even higher m at the 

edge.  Experimentally, the predicted instabilities would be observed as 2/1 kink modes if 

the full internal diagnostic array were used, as the analysis in Figure 14 indicates.  

The relative contributions of the computed mode structures within the plasma from 

m = 1,2,3 and higher m are sensitive to significant changes in the resistivity profile.  

Generally, it is found that, consistent with naïve expectations, increasing  tends to 

increase the m = 2 harmonic, increasing  tends to increase the higher m harmonics, 

and increasing  tends to increase the m = 1 core component.  For sufficiently high  

and low , the computed instabilities are pure, internal, resistive quasi-interchange 

modes and are discarded from consideration.  At very low , the irrelevant ideal quasi-

interchange instability is found with very low growth rate.  This independent mode is 

usually masked by the faster growing resistive kink modes when the latter are unstable 

and is also ignored. 

For very large and steep profiles, the physical resistive kink is lost and a numerical 

artifact only is present, consisting of m > 3 harmonics localized almost entirely on the last 

surface.  These modes are also discarded as unphysical.  In the intermediate range, some 

modes consist of a well-resolved m ≤ 3 part and a poorly resolved edge.  While not 

always accurately resolved, these cases are included in the scaling studies discussed in 

the next section.  In all other cases, the modes display the general features shown in 
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Figures 9, 11, and 12, with some m = 1, significant m = 2 peaking at q = 2 (i.e. with kink-

like parity) but remaining finite at the edge, and with an m = 3 peaked at the edge. 

The resistive kink is then a good candidate to explain the observed instabilities in a 

diverted cross section.  While it has not been shown that the resistive kink is necessarily 

unstable, it has been shown that the mode can be found within the considerable 

experimental uncertainties in the resistivity profile and that the computed instabilities 

reproduce the observed magnetic signals.  The hypothesis also makes sense in that at 

some point, for sufficiently large resistivity at q = 2, the plasma edge region should be 

indistinguishable from the vacuum on the other side of the separatrix.   

4. Discussion 

The results raise several new interesting questions.  The argument has been applied 

to the diverted case but one can also ask why it should not also apply in the limiter case; 

the resistive kink should be destabilized when the q = 2 surface is in the highly resistive 

edge region while qedge > 2.  In fact, the resistive kink is unstable at the mode onset in 

discharge #154907. Section 4.1 discusses this in some detail.   

The instabilities have been referred to as resistive kink modes on the basis that they 

exhibit dominantly kink-interchange parity but require finite resistivity.  However, 

resistive kink instabilities [Coppi 1976, Hastie 1987, Charlton 1988, Huysmans 1993] 

typically have a fractional power scaling with the resistivity. The scaling with various 

characteristic resistivity values , , and  is described in Section 4.2. The 

remaining sections address several further issues with the interpretation of the instability 

as a resistive kink mode.  The main issue is a justification for the modifications made to 

the model resistivity profiles and several justifications, all likely to be valid at some level, 

are given in Section 4.3. Finally, the cases considered are experimentally obtained 

equilibria that can be unstable to a variety of other instabilities. A number of minor 

complicating issues arose regarding the distinctions and coupling of the resistive external 

kink with these other modes. These are dealt with in Section 4.4. 
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4.1 Resistive Kink in Limiter Configurations 

The ideal MHD stability calculations described in Section 3.2 for the limited 

discharge #154907 at 2445 msec found stability consistent with the reconstruction at that 

time with qedge = 2.08 > 2.  The absolute error in qedge was estimated from a Monte-Carlo 

analysis with varying equilibrium fits as ±0.01 [Hanson 2014].  In limited discharges 

with the X-point sufficiently far from the plasma boundary, the value for qedge depends 

only on the total current, which is accurately known, and the plasma shape, which is 

obtained from 39 flux loops and 42 poloidal field probes. Thus, the random errors are 

small and yield the error estimate quoted. As mentioned earlier, the minor discrepancy 

with the observed instability onset can be attributed to small additional but unidentified 

systematic errors in the reconstruction.  However, an obvious alternative explanation is 

that the resistive kink is already destabilized when qedge = 2.08.  This was tested in 

calculations with the MARS code using a resistivity profile obtained for this discharge 

from the Spitzer model and Te obtained from Thomson scattering measurements. 

An inverse equilibrium was constructed with the CHEASE code for the MARS 

calculations with qedge = 2.06.  This was ideally stable even to the quasi-interchange. 

Assuming the unmodified Spitzer profile, the calculations assuming a resistive wall found 

a weakly unstable and poorly resolved edge kink mode with some m = 2 but a singular 

high  ( ) peeling component on the outermost surface.  The peeling component is 

again a numerical artifact, attributable to the large steep resistivity at the very edge, and 

can be eliminated by slight modifications in the edge profile.  Adding a bump near q = 2 

then results in a well-resolved 2/1 external kink.  

Figure 16 shows the Fourier decomposition of the instabilities with and without the 

modification. The marginal case with no modification is shown in Figs. 16 (a) and (b); 

for this, the core resistivity was taken as , and . The growth rate 

is small with , consistent with this case being only 

marginally unstable.  As can be seen, there is some 2/1 structure present but it is 

dominated by the numerical peeling artifact.  The modified case in Fig. 16 (c) and (d), 

however, shows the expected dominant 2/1 structure.  The profile modification 
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parameters for this were taken as , A = 200, , , , and 

. The growth rate, still assuming the resistive wall, is increased to an ideal 

kink-like level with 

€ 

γ + iω( )τA = 0.0205 − 0.000197 i . With no wall, this is increased 

further to 

€ 

γ + iω( )τA = 0.0326 − 0.000203 i . The corresponding resistivity profiles are 

overlaid in Figure 17.  The bump at , has the effect of broadening the profile. 

The comparison made in Figure 6 for this discharge, between the ideal instability, 

calculated by arbitrarily cutting the edge to yield qedge = 1.999, and the measured signals, 

can be repeated for the resistive kink. The result is shown in Figure 18.  Here, the second 

case in Fig. 16 with an enhancement of  was used; the other prediction is similar 

but is not as clearly resolved.  It is evident from comparing this with Figure 6, that the 

resistive kink equally well reproduces the measured signals. 

This explanation for the observed instability onset with qedge slightly above 2.0 is 

more satisfactory than invoking unknown systematic errors and arbitrary cutoffs.  

Moreover, it adds considerable weight to the proposed explanation for the instability in 

the diverted case.  The q = 2 surface in the limiter case is very close to the plasma edge 

and must at some point in the discharge evolution reach a region of high resistivity 

sufficient to trigger the resistive kink before qedge = 2 is reached.  This result is also 

consistent with previous results [Huysmans 1993] showing a resistive kink counterpart to 

the ideal external kink is unstable when the respective rational surface is still inside the 

plasma but close to the edge. The result is also consistent with earlier JET results  [Hugon 

1991] that found the instability onset for higher n,m edge kink modes occurred during a 

current ramp before the corresponding rational surface left the plasma. 

4.2 Resistivity Scaling 

No analytical scaling for the external resistive kink modes is known.  However, 

previous studies of internal resistive 1/1 kink modes found the growth rates scale with a 

fractional power of . [Coppi 1976, Hastie 1987, Charlton 1988], namely , with 

. In those studies the resistivity profile was usually taken to be a constant.  

Generally, since the modes in question were internal kinks, the characteristic value of  
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is assumed to be . In the resistive external kink spectrum study, [Huysmans 1993] 

fractional 

€ 

ν ~ 3
5 and  scalings were found for core and external modes respectively 

using a constant resistivity profile with the characteristic resistivity value taken to be . 

With realistic profiles, the scaling of the external kink growth rate is complicated by 

the lack of a single characteristic  value; the core and the edge resistivity differ by 

several orders of magnitude and there is no single edge resistivity value.  Nevertheless, 

one can expect that  and  are the most relevant parameters. A large number of 

stability calculations were performed in the course of this study with varying resistivity 

profiles, obtained by varying the model and from taking systematic and random 

variations in the additional modifications. The results of the calculations were collected 

and analyzed for the scaling with respect to  and .  The growth rates are 

summarized for the diverted case #150513 in Figure 19 on a log-log plot.  All the cases 

shown assume the DIII-D resistive wall. The colour coding and symbols identify specific 

sequences corresponding to different resistivity profile types. Figures 19 (a), (b), and (c) 

show the scaling with , , and , respectively.  In Fig. 19 (a), the low  

range follows an overall scaling of ,  with a best fit of 

€ 

ν ≅ 1
2.  In the lower 

€ 

η 

range, the scaling is also consistent with 

€ 

ν ≅ 3
5. At higher , the scaling transitions to 

, consistent with an expected resistive kink [Coppi 1976, Hastie 1987, Charlton 

1988, Huysmans 1993]. 

The scaling with  in Fig. 19 (b) is similar but the scatter is larger, especially at 

higher . This suggests that  is the more appropriate scale parameter, although the 

residual scatter in Fig. 19 (a) also implies it is not  alone that is important. The major 

outlier, indicated in orange, corresponds to an isolated case where the resistivity profile 

was strongly peaked at q95 with .  Figure 19 (c) shows there is no 

identifiable scaling with , as expected.  The slight positive trend is almost certainly due 

to the correlation between  and  in the selection of profiles. 



 31 

Although there is some scatter in the scaling with  and , distinct sequences 

can be identified where only a single parameter was varied.  These show the fractional 

scaling most clearly. In the most complete sequence, corresponding to a systematic 

variation from increasing only the bump amplitude and indicated by the red diamonds, 

the 

€ 

ν ≅ 1
2 or 

€ 

ν ≅ 3
5  scaling at low  is fairly clear. At high , the data points mostly 

correspond to the Sauter and effective resistivity profiles and these exhibit the  

scaling.  

For the limiter discharge # 154907 discussed in Section 4.1, the scaling is similar 

but there are some interesting differences.  Figure 20 shows the scaling with respect to 

 for the modified Spitzer profile; the scaling with  is identical since the q = 2 

surface is very close to the edge where  is usually close to the maximum. In this case, 

the scaling transitions smoothly from  at low , to  at higher  

. A continuous sequence with increasing bump amplitude is identified by the blue 

diamonds and exhibits the complete transition in . The leftmost point at low , 

however, corresponds to the unmodified profile and the mode there is quite singularly 

localized on the plasma boundary.  The point was retained since it is part of the sequence 

with increasing enhancement and approximately fits the scaling with the others.  In fact, 

the mode structures also appear to approach this singular limit as the marginal point is 

approached with decreasing ; the last four modes in the sequence become 

increasingly localized at the last surface.  

The origin of the linear scaling regime for this case is not clear.  It is usual to 

dismiss regimes where the growth rates scale linearly with  on the grounds that such 

linearly scaling instabilities are too slow to be relevant except over a resistive diffusion 

time, during which the profiles evolve diffusively.  However, that argument applies only 

to core instabilities where the relevant characteristic resistivity is 

€ 

η0 ~ 10
−8. In the present 

case the scaling is with  or , which are orders of magnitude larger.  Thus, the 

“low”  range yields relevant kink mode like growth rates even with linear scaling. 
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At the highest  values the scaling in Fig. 20 appears to transition smoothly 

through different exponents with decreasing , finally asymptoting to .  In the 

figure, the two solid lines show the 

€ 

γ ~ η and 

€ 

γ ~ η1
3  scalings.  The three short dashed 

lines show possible intermediate scalings of 

€ 

γ ~ η1
4  and 

€ 

γ ~ η1
5 , and finally, 

€ 

γ ~ η0.  This 

transition to  should not be too surprising; as  is increased, the plasma near the 

q = 2 surface should become indistinguishable from a true vacuum except for the small 

but finite current and pressure there.  The mode should therefore be expected to transition 

to the ideal-like scaling with . Although the ideal scaling should be taken with some 

reservation since the modes tend to become more singularly edge localized at high  

and this possibly corrupts the scaling, the same trend may also be present in the diverted 

case in Fig. 19 at higher  values than those considered. 

There are some additional differences however between the two cases. Figure 19 

suggests there is a distinct break between the two identified scalings for the diverted case, 

whereas, for the limiter case, the exponent  appears to transition more smoothly through 

the whole range of fractional values in between. This distinction may be an artefact of the 

finite data set.  On the other hand, in the divertor case, some of the difference is real.  For 

example, the linear scaling regime at low  is not at all apparent; at low , the resistive 

external kinks tend to disappear and are replaced by internal kinks.  This difference might 

be related to the fact that in the latter case, the m = 2 component usually has the 

prominent kink-parity peak inside the edge, whereas for the limiter case, the q = 2 surface 

is very near the edge and the m = 2 rollover in displacement is terminated there. 

There is also an important difference with respect to previous studies [Hastie 1987, 

Charlton 1988].  These studies have shown that the resistive internal  kink, which 

also scales with , transitions to a tearing mode with scaling  for low .  

Similarly, Huysmans [Huysmans 1993] found mode structure transitions associated with 

transitions in the resistive external mode scaling between tearing and kink regimes.  

However, in the present case, there is no discernable change in mode structure through 

the transitions. 
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4.3 Justifications for Resistivity Enhancement 

From the calculations for the limited discharge #154907, the resistive edge yields 

the same qualitative result as taking a cutoff in an ideal calculation down to q = 2.  

Nevertheless, there is an important distinction in that, with the cutoff, the edge pressure 

and current density are redistributed or removed completely, leaving an edge gradient.  

The cutoff procedures all involve some ambiguity in how the edge profiles are modified.  

Invoking the resistivity profile in the edge is more self-consistent but leaves a residual 

ambiguity in the choice of the resistivity profile.  However, this profile can be measured. 

In this study, the model resistivity profiles required some enhancement in order to 

produce a well-resolved unstable resistive kink mode.  This can be justified on several 

grounds.  First, given the Spitzer model, the high edge resistivity results from very low Te 

in the edge region where the measurement errors are of the same order as Te itself.  

Therefore, the relative error in  is very large near the edge.  Including an 

enhancement can therefore be interpreted as having a somewhat colder edge – within the 

experimental errors – than the nominal measured value.  Large enhancement factors 

correspond to taking the extreme limit in the error bars on Te.  Figure 21 shows the Te 

profiles obtained by inverting Eq. (4) that would be required if the profile were Spitzer 

and corresponded to the modified profiles used for example in Figures 9 and 11, which 

used the largest enhancements. These are renormalized and are overlaid with the original 

Te profile.  In both cases, the modifications simply correspond to lower Te in the edge 

than the actual measurements and are not much outside the nominal error bars. 

Further, as shown in Figure 8, there are significant differences in the resistivity 

profiles between the three different models. The pedestals at the inside foot of the steep 

gradient region in the Sauter and ‘effective’ resistivity profiles are particularly interesting 

in that they provide much of the needed enhancement over the Spitzer profile, suggesting 

that enhancements near q = 2 are real.  Nevertheless, while the Sauter model is expected 

to be more accurate than the Spitzer model by including neoclassical effects [Sauter 

1999], it is a phenomenological fit to a set of independent calculations.  Thus, it is also 

subject to uncertainties in the fitting, as well as in the calculation of the trapped particle 

fractions required as input and obtained from transport modeling for this specific case.  
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The ‘effective’ resistivity profile is similarly subject to considerable uncertainties 

resulting mostly from taking time differences of evolving equilibria, but uncertainties 

also arise from the modeling of the noninductive current density contributions.  Hence, it 

should not be expected that any of the model profiles accurately reflect the real profile 

except in the grossest features. The steeply rising edge profile implies that the position 

errors in 

€ 

η(ψ )  are more significant than the magnitudes of 

€ 

η(ψ ) . The major effect of the 

modifications is to move the steep region inward and the modifications are essentially 

within the positional uncertainties.  

In this context, the time evolution of the discharges provides probably the most solid 

justification for the modification procedure. Given a discharge with increasing current, as 

€ 

q(ψ ) evolves, the q = 2 surface moves progressively outward into the steep resistivity 

region. At some point, the mechanisms described must apply and the instability will be 

triggered. Moving the steep region inward simply corresponds to having the mode onset 

slightly earlier, and the evolution of q = 2 through this steep resistivity edge as I is 

ramped implies that the effective discrepancy in onset time is small.  Essentially, even 

without the modifications, the discharge would still enter the unstable resistive kink 

regime.  In that sense, the modifications can be considered as a numerical tool to bring 

the mode past the marginal point where it can be numerically resolved. 

Just as in the limiter case, the resistive kink is triggered in the divertor case before 

the ideal mode. The main distinction appears to be that with a diverted cross section, the 

ideal instability is in some sense further away. Given the sensitivity of the stability to the 

position of the steep resistivity gradient coupled with the uncertainties in position from 

the reconstruction, the prediction of an unstable resistive kink mode using the enhanced 

resistivity is consistent with the observations; in the evolving discharge, the errors in the 

position of the steep gradient region relative to the q = 2 surface are translated into small 

discrepancies in the onset time.  

4.4 Critical Remaining Issues 

4.4.1 Tearing versus Interchange 

The computed instabilities shown in this work all have a dominant interchange or 

kink parity.  There is no sign change in the displacement indicative of tearing at the q=2 
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surface.  In the experiments, tearing would be manifested as island formation at the 

respective rational surface. For the low  experiments [Piovesan 2014, Hanson 2014], no 

clear islands were observed.  However, in discharge #150513, the electron temperature 

profile in Figure 8 (a) was obtained using all the data available near the time of the 

disruption in order to maximize the photon statistics.  If only the most reliable data from 

the time closest to the onset is used, a flat spot, suggestive of an island, is apparent 

somewhat inside the q = 2 surface.  While the appearance of spurious flat spots is 

relatively common in the Thomson temperature data, given the importance of the 

possible presence of an island to the hypothesis proposed here, this evidence requires 

more serious consideration. 

Figure 22 (a) shows the data.  The apparent flat spot is intermittent and is likely a 

result of the plasma motion relative to the Thomson chords.  Figure 22 (b) shows the 

€ 

Te  

data taken from times nearest to the time in Fig. 22 (a).  The grayed data points are the 

individual times and channels.  The red crosses are an average over a 26 msec window, 

with the error bars taken as the statistical root mean square and the red curve as the best 

fit.  The blue crosses and curve are averaged over a 50 msec window from an earlier 

time, from 2050 to 2100 msec for comparison. As can be seen, the raw data shows the 

flat spot is not persistent and is eliminated from the average; the averaged data is 

relatively smooth and monotonic and the two time windows are not statistically different. 

While the significant scatter in the full Thomson data in Figure 8 (a) can 

accommodate a possible island, no other evidence for islands has been observed.  In 

particular, no magnetic precursor signal is seen in this case. Since no 2/1 tearing modes 

were actually found using MARS and the resistive kink interpretation otherwise remains 

consistent, while it remains possible, it seems unlikely that this flattening represents an 

island.  If it does, it is apparently located inside q = 2 rather than at q = 2.  

For the limiter discharge #154907, a rotating precursor to the 2/1 instability was 

observed. It is not clear under what conditions the precursor is present in these low q 

discharges.  However, again, while some slowing is seen, the rotating precursor is not 

indicative of an island since the usual mode locking dynamics, where the rotating mode 
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locks and then grows in amplitude, are not present.  The disruption in this case is best 

explained as the RWM counterpart to the ideal mode, but initiated as the resistive kink. 

4.4.2 Role of other ideal modes 

An objection to the claims made that the ideal kink cannot explain the observed 

disruptions for diverted discharges can be raised since ideal peeling modes could be 

found for some representations of the reconstructed equilibria, as in Fig. 7, when the 

cutoff or extrapolation procedure resulted in equilibria with 

€ 

qedge  just below an integer.  

However, in order to explain the disruption, these weakly unstable modes would need to 

persist and continue growing exponentially while the effective

€ 

qedge  drops into the linearly 

stable range - in this case when 

€ 

qedge < 2.90  - and continue to grow while linearly stable 

until  is reduced below 2.0. Given the narrow instability ranges and the weak linear 

growth rates within those ranges, this seems difficult to conceive.  In addition, the 

calculated ideal instabilities are dependent on the arbitrarily selected cutoff. The resistive 

kink explanation is both more natural and more justified. 

The conventional internal kink, occurring when qmin < 1, [Bussac 1976] has an m = 

1 component coupled to m = 2, which greatly complicates the identification of an m = 2 

external kink. The reconstructions avoided the most serious complications by forcing qmin 

> 1. However, the total current is held fixed and the current density associated with 

raising  must be deposited off-axis so that the profiles have a tendency to develop a 

minimum off axis before . The ideal quasi-interchange mode [Wesson 1986] can 

then be destabilized, especially if the profile is slightly hollow ( ).   

For the diverted discharge equilibrium recomputed from the CHEASE code (Figure 

4), an underlying ideal quasi-interchange is present as a result of the broadened negative 

shear region. However, this is an independent purely  mode and is ignored as an 

artefact of the equilibrium procedure.  It could in principle be stabilized by a small 

increase in qmin. For the reconstructed limiter discharge equilibrium, the ideal quasi-

interchange mode can similarly be ignored. It is stable for the CHEASE equilibrium used 

in the resistive stability calculations.  
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While the  quasi-interchange is not directly relevant to the external, dominantly 

2/1 kink, it does couple to it and, like the conventional internal kink, this similarly results 

in complications in the identification of the numerical instabilities found. All cases with 

essentially a pure m = 1 were excluded from consideration in the resistive external mode 

analysis.  Nevertheless, almost all the numerically computed ideal or resistive kink 

instabilities do include some m = 1 component.  The proportion of m = 1 relative to m ≥ 2 

is highly sensitive to the details of the core q profile and, for the resistive kink, to the 

details of the core resistivity profile.  In selecting relevant cases then, instabilities with 

some m = 1 component were included.  In some of those, the m = 2 component is 

subdominant to m = 1.  Nevertheless, they fall in with the fractional resistivity scaling 

with respect to  in Figures 19 and 20 and are included in the aggregate results. The 

main outlier, obtained from a resistivity profile with 

€ 

ηq=2 >>ηedge  corresponds to a mode 

with roughly equal m = 1 and m = 2 components for example.  

The sensitivity of the relative contributions of the m = 1 and m = 2 to profile details 

is present in both the limiter and divertor cases.  It is also present in the ideal calculations.  

Presumably, a significant m = 1 component is also present in the experiments.  However, 

both the external magnetic measurements and the synthetic diagnostic predictions are 

dominated by the m = 2 external kink component and the data cannot discriminate 

between different predictions, as seen in Fig. 15, with varying levels of m = 1. 

While not important for the stability of the external resistive kink mode, except as a 

complication, the coupling of the 1/1 component in the core to the external 2/1 

component is likely to be crucial for the sawtooth dynamics [Turnbull 1989b]. In RFX it 

was found that the application of a small external 2/1 field at low 

€ 

qedge  could stabilize 

sawteeth and replace them with a saturated and continuous 1/1 internal helical 

displacement [Martin 2014, Piron 2016]. The mechanism is not entirely clear but the 

coupling between the 1/1 response and the external 2/1 field must play a role.  Even in 

the linear case this coupling is not straightforward. As was noted in Section 3.2, coupling 

of the ideal external kink with the underlying unstable quasi-interchange through toroidal 

and shaping effects produced two ideally unstable  modes for the limiter discharge 

#154907 with qedge < 2; in terms of degenerate perturbation theory, if the eigenvalues are 
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similar, coupling through toroidal geometry or shaping produces two independent linear 

combinations of the uncoupled modes.  The eigenvalues also separate.  

In the present case, both the eigenmodes in Figure 5 are ideally unstable, with a 

difference in growth rate of a factor 5. However, in the other ideal calculations with 

GATO, for example for the diverted case discharge #150513, only single coupled 

unstable modes were found. Note that the real eigenvalues are ordered in the GATO 

code, whereas for the resistive kink it is not always possible to find the eigenmodes in the 

complex plane since there is no partial ordering (Sylvester’s Law does not apply).  It is 

therefore possible that a second unstable mode does exist but could not be easily found 

from searching in the complex plane. 

The existence of two unstable modes in the limiter case arising from coupling to the 

1/1 to an edge instability is in contrast to the free-boundary version of the conventional 

internal kink (q0 < 1), namely the toroidal kink [Turnbull 1989a, Turnbull 1989b], where 

previous studies [Turnbull 1999] found only a single, coupled m = 1 plus higher m, ideal 

mode.  It is not clear at present whether the difference is accidental or is related to the 

distinctions between the quasi-interchange m = 1 and the conventional internal kink, 

since, in a torus, these have different coupling to m = 2.  Alternatively, in some cases the 

second eigenmode of the split pair may exist but simply be fully stabilized given that 

typically one eigenvalue is increased and the other decreased.  This is worth further 

investigation since the linear coupling between the core and edge will have important 

implications for the nonlinear coupling of sawteeth to other instabilities [Piron 2016]. 

5. Concluding Remarks 

The failure of the ideal theory to predict the disruptive instabilities in diverted 

discharges has historically left a serious gap in predictive capabilities. Ideal theories have 

only been able to reproduce the observed instabilities in diverted discharges by imposing 

a cutoff but the cutoff value is arbitrary and the results depend on the value.  For the 

lowest n modes, and the 2/1 in particular, the required cutoffs are unjustified. With the 

resistive kink explanation for the instability, this predictive capability has been largely 

restored for both limited and diverted discharges. 
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The results are not quite sufficient to claim that the observed mode is 

unambiguously the resistive kink.  There are concerns, as detailed in Section 4.3 – most 

notably the need to enhance 

€ 

η near q = 2 beyond the nominal Spitzer value.  Also the 

sensitivity of the mode structures to details of the  profile in general is a cause for 

concern even though the final synthetic diagnostic predictions are relatively insensitive.  

Related to this sensitivity is the issue that the numerical resolution of the modes in the 

edge region depends strongly on the steepness of the edge resistivity profile.   

Nevertheless, the resistive kink mode explanation of the disruptive instability in the 

divertor discharge #150513 has been shown to be consistent with the mode structure 

observed on the external magnetics. The scaling with edge resistivity has also been 

shown to be resistive kink like. The resistive kink mechanism described is a fairly natural 

explanation for the observed instability as well.  The alternative explanations of either 

tearing modes, ideal  peeling modes obtained from unlikely variations in the 

current and pressure profiles (e.g. Figure 7), or unknown systematic errors in the 

reconstruction, appear to be largely ruled out.  Non-ideal effects beyond finite resistivity 

are likely too small to provide a convincing explanation of the fast growing disruptive 

instability. The finite edge resistivity, in contrast, is a large non-ideal effect. Improved 

data quality, particularly for the resistivity would help to remove remaining ambiguities. 

The proposed mechanism also explains the slight discrepancy in the onset 

conditions for the disruption in the limiter case that is more satisfying than invoking 

unknown systematic (though small) errors in the reconstruction.  In fact, in the limiter 

case, the resistive kink appears to transition to the ideal kink with increasing edge 

resistivity, consistent with the q = 2 surface in that case being located right near the edge.  

Thus, the resistive kink should be triggered before the ideal one as soon as the q = 2 

surface reaches the vacuum-like resistive region.  The same mechanism is proposed to 

operate in the diverted case, with the exception that, in terms of q, the ideal instability is 

‘a logarithmic infinity’ away. 

The following sections conclude by providing a sense of future directions and some 

additional speculations for the next generation of fusion experiments. 
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5.1 Future Directions 

The results open new avenues that can be pursued in order to resolve the remaining 

concerns.  Most important, the analysis in Section 3 was performed for L-mode plasmas 

since experiments with good data were available for those cases and the comparison 

could be made directly with the limited L-mode discharge. The edge conditions in H-

mode discharges, with a large pedestal pressure and associated bootstrap current, are 

significantly different from those in L-mode.  In particular, the temperatures near the 

95% flux surface tend to be higher and the resistivity correspondingly lower. At some 

point close enough to the edge, the resistive kink should still be destabilized and it needs 

to be shown that this corresponds to 

€ 

q95 = 2. 

Some confidence in this respect can be found from the fact that one sequence shown 

in Figure 19 used a Spitzer resistivity profile taken from a previously analyzed H-mode 

discharge. For this sequence, the width of the bump was generally larger but the 

enhancement factors were similar to those using the Sauter and ‘effective’ profiles.  

Despite the different conditions, it is significant that these data are consistent with the rest 

of the data, which corresponds to an L-mode resistive edge.  It can then be expected then 

that the quantitative results in H-mode would be similar to that reported here for the L-

mode case since the same physics is applicable.  Detailed analysis of the H-mode 

discharges in the same sequence as the L-mode cases analyzed here should confirm this. 

The growth rate scaling studies have revealed some additional surprises. First, at 

both low and high , the diverted and limited cases appear to scale somewhat differently. 

The reason for this is not clear; it may be an artefact of the finite data set or due to the 

influence of the nearby X-point in the diverted case.  In general, the transitions between 

different fractional scalings are unexpected since there seems to be no definite transition 

in mode structure in either discharge type. This is in contrast to the transitions between 

€ 

ν = 3
5, and , for the internal resistive modes that coincide with a distinct change 

from tearing to interchange parity [Hastie 1987, Charlton 1988, Huysmans 1993]. For the 

diverted case the fractional 

€ 

ν = 1
2 scaling is unusual.  Given the scatter in the data, a 

€ 

ν = 3
5 scaling fits almost as well for the lowest  values (Figure 19 dashed green line) 

but the modes are interchange or kink parity. 
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The smooth transitions in scaling exponent  for the limiter case are especially clear 

from the continuous sequence in Figure 20 with increasing bump amplitude. It is 

interesting to speculate that the resistive external kink modes might generally have a 

scaling that transitions smoothly through various fractional values, , 

€ 

ν = 3
5, , 

and 

€ 

ν = 1
3, to the ideal scaling with 

€ 

ν = 0 as  increases from low to vacuum-like values.  

While the linear regime may not always be present (for example in diverted equilibria), 

the 

€ 

ν = 0 scaling transition may be present in the divertor case. Such a continuous 

transition, however, would question the validity of fractional power law scalings for the 

external resistive kink modes over more than a limited range of values. An analytic 

model that includes the sharp increase in edge resistivity is probably needed to resolve 

the scaling issues.  

The results also have a bearing on the conventional cutoff procedures used in ideal 

stability calculations.  The conventional procedure used in ideal MHD codes, as defined 

from earlier studies [Medvedev 2001], and set out in Section 3.1 is largely validated; 

small cutoffs are valid so long as they do not remove the key rational surfaces and 

generate localized peeling modes such as in Figure 7. However, this can now be refined 

in light of the results presented here. Given that the actual instability is a resistive kink, 

an ideal code can still reproduce an instability that exhibits most of the key features of the 

resistive kink. If the discharge is unstable, an ideal stability code can find an equivalent 

ideal instability only if the respective rational surface is removed; the cutoff of the 

rational surface is necessary to ‘reproduce’ the instability as an ideal mode. Presumably 

in that case 

€ 

ηq=2 ≥η
crit . On the other hand, if the discharge is actually stable, then the 

cutoff should not remove the rational surface since otherwise an (ideal) instability will be 

found. In this case, the resistive kink is stable in reality so that 

€ 

ηq=2 <ηcrit  and the cutoff 

should not exceed the surface where 

€ 

η =ηcrit . 

This procedure requires either that the actual stability be known beforehand so that 

the appropriate surfaces are removed, which is the standard procedure. The new 

alternative is that if 

€ 

ηcrit  is known, the cutoff can be imposed there. For high and 

intermediate n peeling-ballooning stability calculations, where the pure high m peeling 

modes are considered irrelevant, the standard practice of using only small cutoffs with a 
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minimum distance to the next rational surface [Eldon 2015] is probably justified.  For the 

lower m modes like the 2/1, the instabilites are highly relevant and the standard procedure 

should be replaced. 

The question then remains to determine 

€ 

ηcrit . From the calculations, a rough critical 

value for  appears to exist, above which the m = 2 resistive kink is unstable and 

below which it is stable. The value is in the range , but also depends on details 

of the profile in the neighbourhood of q = 2. The region just inside q = 2 appears to be the 

most crucial. The appropriate value presumably depends on the instability in question. 

Additionally, the Glasser stabilization effect [Glasser 1975] probably imposes a 

dependence of 

€ 

ηcrit  on the plasma β, though for the low pressure equilibria considered 

here with

€ 

βp ~ 0.1, this is probably small.  Previous studies also found this effect to be 

much weakened for instabilities closer to the edge. The effect is possibly important in H-

mode, however, since there is a significant pressure gradient in the region near q = 2. For 

the lower n modes, resistive kink calculations can be used to quantify the 

€ 

ηcrit

 values, 

making the cutoff selection for ideal codes quantitative. 

Finally, in the RFX-mod experiments, the closed loop feedback was turned off at 

different times in the evolution and the open-loop growth rate trend [Piovesan 2014, 

Hanson 2014] strongly suggested a stable region exists below qedge ~ 1.5.  This is 

consistent with the original picture [Shafranov 1970, Wesson 1978], which found a 

region stable to ideal kink modes when 

€ 

1.0 ≤ qedge ≤ qcrit ~ 1.5 for sufficiently diffuse 

current profiles. This appears to be a promising regime, allowing very high current and 

with no low  rational surfaces in the plasma.  The major obstacle to reaching it at 

present is the lack of sufficient power supplies to maintain active stabilization until the 

stable region is reached.  Given sufficient power supplies in the future, an obvious 

concern would then be whether the ideally stable region also allows stability to the 

resistive kink.  The answer seems likely to depend on the resistivity profile.  Resistive 

kink stability could be controlled partially by varying the edge resistivity, either through 

heat addition or removal, influx of neutral particles, or by modifying the neoclassical 

corrections through the current and pressure profiles. 
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Probably a more serious concern is the internal quasi-interchange, since this is 

unstable typically when , which would reduce the stable q profile range to 

between  in the core and about 1.4 at the edge. For most scenarios in DIII-D, 

, but the limiting lower value of  increases weakly with decreasing 

€ 

qedge . 

Nevertheless, if it can be created and pushed through the unstable band using active 

stabilization, and if it can subsequently be maintained by active profile control, the 

resulting high current, potentially high β configuration would result in a highly attractive 

Advanced Tokamak scenario. 

5.2 Significance of q95 

The remaining question that originally motivated this study, but has not been 

answered, is why qedge in limiter discharges is replaced so effectively in major tokamaks 

by q95 when the cross section is diverted.  The glib but partial answer provided here is 

that q95 is simply where the resistivity is sufficiently large that the region outside this is 

effectively a vacuum as far as the kink mode is concerned.  This is not entirely 

satisfactory, since it begs the question why it is so precisely q95 in all major experiments.  

The only answer that can be given at present is that the width of the steep resistivity 

region is determined largely by processes, such as neutral particle fluxes across the 

separatrix, that scale with the physical device size.  Most present-day diverted tokamaks 

are roughly of the same size, namely of the order of a metre or two in major radius.  Thus 

q95 tends to fall at roughly the same distance (within a factor two) inside the discharge. 

This happens to coincide with the steep rise in the resistivity profile.  In addition, while 

the limit is consistent with all known cases, it has not been carefully and quantitatively 

tested in all conditions, particularly at low aspect ratio or high elongations. 

While this explanation is not very satisfactory, if it turns out to be true, then it has 

some serious implications for ITER, which will be an additional factor two larger in 

physical size than the largest existing experiments – a factor four times DIII-D for 

example.  If the distance to q95 scales with machine size as expected, but the steep 

resistivity location scales differently (e.g. is a fixed distance like a few cm), then q95 may 

no longer be the relevant parameter in ITER. The ITER edge temperatures are also 
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expected to be substantially hotter than conventional experiments as a result of the alpha 

heating and the resistivity should be correspondingly lower. The scaling of the width of 

the high resistivity region with machine size and the distance of the 95% flux surface 

from the edge, need to be determined. 
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Figure Captions 

Figure 1: Time development of the DIII-D L-mode limited discharge #154907 showing 

(a) current 

€ 

I  and (b) edge safety factor qedge. (c) Amplitude (solid black curve, 

left logarithmic scale) and phase (dashed blue curve, right linear scale) of 

magnetic precursor signals on an expanded time scale. The red dashed curve is 

the 1.8 msec growth curve. (d) Colour contours of amplitude versus toroidal 

angle and time on expanded time scale. 

Figure 2: Reconstructed equilibrium for the limited discharge #154907 at 2425 msec 

with . (a) Boundary and reconstructed flux surfaces with model wall 

for reference, (b) safety factor and absolute value of the pressure gradient as 

functions of  and, (c) toroidal current density profile as a function of major 

radius.  Shown also in (b) and (c) are the extrapolated equilibrium profiles 

projected beyond 2425 msec to qedge = 1.95, denoted as 2650 msec. 

Figure 3: Time development of DIII-D L-mode diverted discharge #150513 showing (a) 

current I, (b) the safety factor at the 95% flux surface q95, and (c) poloidal 

magnetic field sensor signal. 

Figure 4: Reconstructed equilibrium for the diverted discharge #150513 at 2340 msec 

with  and . (a) Boundary and reconstructed flux surfaces 

with model wall for reference, (b) safety factor and pressure gradient profiles as 

functions of , and (c) toroidal current density as a function of major radius. 

Shown overlaid in (a) is the equilibrium boundary obtained from the CHEASE 

code with a cut off of the edge to exclude the X-point (red dashed curve), 
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yielding q95 = 1.995 and qedge = 2.85.  The corresponding profiles are also 

overlaid (dashed curves) in (b) and (c). 

Figure 5: Ideal eigenmodes computed using GATO showing the Fourier decomposition 

of the normal displacement  with respect to the PEST straight field 

line poloidal angle χP , as a function of , for the two unstable ideal modes 

found in the limited discharge #154907 near 2425 msec.  The equilibrium used 

is the extrapolated time shown in Figure 2.  Shown are (a) and (c) the real and 

(b) and (d) imaginary parts of the two modes. Note the normalization chosen 

with  results in different scales between the real and 

imaginary components for each separate eigenmode.  

Figure 6: (a) Measured and (b) predicted synthetic diagnostic magnetic signals at the wall 

for the limited DIII-D discharge #154907.  The prediction using the MARS 

code, reproduced from [Hanson 2014], is from the equilibrium with 

€ 

I  increased 

to reduce qedge to qedge = 1.995. 

Figure 7: Ideal peeling eigenmode computed using GATO showing the Fourier 

decomposition of the normal displacement  with respect to , as a 

function of  for the diverted discharge #150513 near 2340 msec, using the 

equilibrium obtained from extrapolation to higher current with a small cutoff 

with .  Shown are (a) and (b) the real and imaginary parts of the 

mode, normalized with . 

Figure 8: (a) Measured electron temperature profile for the diverted discharge #150513 at 

2340 msec from Thomson scattering. The radial variable is the normalized 
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square root of the toroidal flux. (b) The corresponding Spitzer resistivity profile 

from Eq. (4) (solid curve).  Also shown in (b) are the model resistivity profiles 

obtained from the Sauter formula (dashed curve) in Eqs. (6), and the ‘effective’ 

resistivity (dotted curve) obtained from transport modeling (Eqs. (7)).   These 

are shown on both linear and log scales against . 

Figure 9: Resistive kink eigenmodes computed using MARS for the diverted DIII-D 

discharge #150513 showing the Fourier decomposition of the normal 

displacement  with respect to , as a function of , for the case 

with the Spitzer profile with (a) and (b) , and (c) and (d) .  

The equilibrium used is the CHEASE equilibrium in Figure 4.  Shown are (a) 

and (c) the real and (b) and (d) imaginary parts for the two cases, normalized 

with . 

Figure 10: Spitzer profiles (solid curves) for the cases with and 

(blue curves; left scale), and , and  (red curves; right 

scale). Modified resistivity profiles (dashed curves) for the same two cases with 

modification parameters , , , and , and , 

, , and , respectively. 

Figure 11: Resistive kink eigenmodes computed using MARS for the diverted DIII-D 

discharge #150513 showing the Fourier decomposition of the normal 

displacement  with respect to , as a function of , for the case 

with the two modified Spitzer profiles shown in Figure 10. The equilibrium 

used is the equilibrium recomputed from CHEASE in Figure 4.  Shown are (a) 
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and (c) the real and (b), and (d) the imaginary parts for the two cases, 

normalized with . 

Figure 12: Resistive kink eigenmodes computed using MARS for the diverted DIII-D 

discharge #150513 showing the Fourier decomposition of the normal 

displacement  with respect to , as a function of , for the case 

with the Sauter profile modified with an additional enhancement near q = 2 

using , , , , 

€ 

η0 =1.1×10−6 , and . 

The profile is shown in the inset overlaid with the original Sauter profile.  The 

equilibrium used is the equilibrium recomputed from CHEASE in Figure 4.  

Shown are (a) the real and (b) the imaginary parts, normalized with 

. 

Figure 13: Resistive kink eigenmodes computed using MARS for the diverted DIII-D 

discharge #150513 showing the Fourier decomposition of the normal 

displacement  with respect to , as a function of , for the case 

with the ‘effective’ profile modified with additional enhancements near q = 2 

using (a) and (b) , , , , , and 

, and (c) and (d) , , , , 

, and . The profiles are shown in the inset 

overlaid with the original ‘effective’ resistivity profile.  The equilibrium used is 

the equilibrium recomputed from CHEASE shown in Figure 4.  Shown are (a) 
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and (c) the real, and (b) and (d) the imaginary parts, normalized with 

. 

Figure 14: Measured (a) magnetic signals at the wall for the diverted DIII-D discharge 

#150513.  Note the poloidal scale is restricted to the outboard side. (b) Fourier 

decomposition of external saddle loop signals for discharge #150513.  (c) 

Magnetic signals at the wall for the full internal poloidal array for discharge 

#154805 showing the structure is dominantly m = 2. 

Figure 15: Synthetic diagnostic prediction for the magnetic signals at the wall for the 

diverted DIII-D discharge #150513 from the three resistive kink modes in 

Figures 12 and 13. 

Figure 16: Resistive kink eigenmodes computed for the limited DIII-D discharge 

#154907 showing the Fourier decomposition of the normal displacement 

 with respect to , as a function of , assuming (a) and (b) the 

Spitzer profile with , and (c) and (d) the Spitzer profile modified 

with additional enhancements near q = 2 using , , , 

, and  and . Shown are (a) and (c) the real, 

and (b) and (d) the imaginary parts, normalized with . 

The equilibrium used is the extrapolated time in Figure 2. 

Figure 17: Resistivity profiles used in Figure 16 for the unmodified Spitzer profile (solid 

black curve) for discharge #154907, with additional enhancements , 

, , , and  and  (dotted black 
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curve), and shown on an expanded scale covering the edge region.  Also shown 

are the modified and unmodified profiles on a logarithmic scale (red curves). 

Figure 18: Synthetic diagnostic prediction for the magnetic signals at the wall for the 

resistive kink mode in the limited DIII-D discharge #154907, and assuming the 

eigenmode in Figure 16 (c) and (d), with the resistivity profile in Figure 17 

(dashed curve). 

Figure 19: Scaling of aggregated resistive kink mode growth rates for the diverted DIII-D 

discharge #150513 with characteristic resistivity values at (a) q = 2 ( ), (b) 

the edge ( ), and (c) on axis ( ). Specific sequences with increasing bump 

amplitude are identified by the red plusses and diamonds.  The modified Sauter 

and effective resistivity cases are identified by the blue plusses and diamonds 

respectively.  The lines indicate scalings of of 

€ 

γ ~ η3
5 , 

€ 

γ ~ η1
2 , and 

€ 

γ ~ η1
3 . 

Figure 20: Scaling of aggregated resistive kink mode growth rates for the limited DIII-D 

discharge #154907 with .  A continuous sequence with increasing bump 

amplitude is identified by the blue diamonds.  The two solid lines show the 

€ 

γ ~ η and 

€ 

γ ~ η1
3  scalings.  The two short dashed lines show possible scalings 

of 

€ 

γ ~ η1
4  and 

€ 

γ ~ η1
5  for the highest  values. 

Figure 21: Modified electron temperature profiles corresponding to inverting Eq. (4) and 

assuming the modified resistivity profiles in Figure 10 with  (red 

curves) and  (green curves) for the diverted DIII-D discharge #150513 

at 2340 msec.  Shown for comparison are the original profiles (solid curves).  
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Figure 22: (a) Electron temperature profile for the diverted DIII-D discharge #150513 at 

2340 msec obtained from using only the most reliable data, showing an 

apparent flat spot inside q = 2. (b) Electron temperature data from nearby times 

(greyed data points) showing large modulations in the region of the flat spot.  

Also shown is the average of the data points over time at each location.  
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