Thermal ion orbit loss and radial electric field in DIII-D

J.S. deGrassie¹, J.A. Boedo², B.A. Grierson³

¹General Atomics, P.O. Box 85608, San Diego, California, 92186-5608 USA ²University of California San Diego, La Jolla, California, 92093, USA ³Princeton Plasma Physics Laboratory, Princeton New Jersey 08543, USA email of first author: degrassie@fusion.gat.com

Abstract. A relatively simple model for the generation of the radial electric field, E_r , near the outboard boundary in a tokamak is presented. The model posits that E_r is established to supply the return current necessary to balance the thermal ion orbit loss current. Comparison with DIII-D data is promising. Features of the model that promote a more negative edge E_r are higher ion temperature, lower density, lower impurity ion content, and a shorter pathlength for orbit loss. These scalings are consistent with experimentally established access to the high-confinement mode edge transport barrier.

PACS Nos.: 52.55.Fa, 52.20.Dq, and 52.25.Fi