Experimental tests of linear and nonlinear 3D equilibrium models in DIII-D

J.D. King^{1,2}, E.J. Strait², S.A. Lazerson³, N.M. Ferraro², N.C. Logan³, S.R. Haskey⁴,

J.-K. Park³, J.M. Hanson⁵, M.J. Lanctot², Y.Q. Liu⁶, R. Nazikian³, M. Okabayashi³,

C. Paz-Soldan², D. Shiraki⁷, and A.D. Turnbull²

¹Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830-8050, USA ²General Atomics, P.O. Box 85608, San Diego, California 92816-5608, USA ³Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451, USA

 ⁴Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australia National University, Canberra, ACT 0200, Australia
⁵Columbia University, 2960 Broadway, New York, New York 10027, USA

⁶Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, United Kingdom

⁷Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA email of first author: kingjd@fusion.gat.com

Abstract. DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of $n \ge 1$ to achieve similar

agreement. These tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. Scans of the applied poloidal spectrum and edge safety factor confirm that low-pressure, n = 1 non-axisymmetric tokamak equilibria are determined by a single, dominant, stable eigenmode. However, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.

PACS Nos.: 52.55.-s, 52.55.Fa, 52.30.Cv, 52.55.Tn, 52.65.Kj and 52.30.Ex