Feedback-assisted extension of the tokamak operating space to low safety factor

J.M. Hanson,¹, a) J. Bialek,¹ M. Baruzzo,² T. Bolzonella,² A.W. Hyatt,³ G.L. Jackson,³
J. King,⁴ R.J. La Haye,³ M.J. Lanctot,³ L. Marrelli,² P. Martin,² G.A. Navratil,¹
M. Okabayashi,⁵ K.E.J. Olofsson,¹ C. Paz-Soldan,⁴ P. Piovesan,² C. Piron,² L. Piron,²
D. Shiraki,¹, ⁶ E.J. Strait,³ D. Terranova,² F. Turco,¹ A.D. Turnbull,³ and P. Zanca²

¹) Department of Applied Mathematics and Applied Physics, Columbia University,
New York, NY 10027-6900, USA

²) Consorzio RFX, Corso Stati Uniti 4, 35127, Padova,
Italy

³) General Atomics, PO Box 85608, San Diego, CA 92186-5608,
USA

⁴) Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830-8050,
USA

⁵) Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451,
USA

⁶) Present address: Oak Ridge National Laboratory, PO Box 2008, Oak Ridge,
TN 37831, USA

(Dated: 22 November 2013)
Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor $q(a)$ near and below 2. The onset of $n = 1$ resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at $q(a) = 2$ (limiter plasmas) and $q_{95} = 2$ (divertor plasmas). However, passively stable operation can be attained for $q(a)$ and q_{95} values as low as 2.2. RWM damping in the $q(a) = 2$ regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of the damped response does not increase significantly as the $q(a) = 2$ limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the $n = 1$ modes has resulted in stabilized operation with q_{95} values reaching as low as 1.9 in DIII-D and $q(a)$ reaching 1.55 in RFX-mod. In addition to being consistent with the $q(a) = 2$ external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant $m = 2$ poloidal structure that is consistent with ideal MHD predictions. The experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.

PACS numbers: 52.65.-y 52.35.Py 52.30.Cv 52.35.-g 52.30.-q 52.55.Fa

\[^a]jmh2130@columbia.edu