Feedback-assisted extension of the tokamak operating space to low safety factor - J.M. Hanson, ^{1, a)} J. Bialek, ¹ M. Baruzzo, ² T. Bolzonella, ² A.W. Hyatt, ³ G.L. Jackson, ³ - J. King,⁴ R.J. La Haye,³ M.J. Lanctot,³ L. Marrelli,² P. Martin,² G.A. Navratil,¹ - M. Okabayashi, ⁵ K.E.J. Olofsson, ¹ C. Paz-Soldan, ⁴ P. Piovesan, ² C. Piron, ² L. Piron, ² - D. Shiraki, 1,6 E.J. Strait, D. Terranova, F. Turco, A.D. Turnbull, and P. Zanca² - ¹⁾Department of Applied Mathematics and Applied Physics, Columbia University, New York, NY 10027-6900, USA - ²⁾Consorzio RFX, Corso Stati Uniti 4, 35127, Padova, Italy - ³⁾ General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA - ⁴⁾Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830-8050, USA - ⁵⁾Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451, USA - ⁶⁾Present address: Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA (Dated: 22 November 2013) Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q(a) near and below 2. The onset of n=1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q(a) = 2 (limiter plasmas) and $q_{95} = 2$ (divertor plasmas). However, passively stable operation can be attained for q(a) and q_{95} values as low as 2.2. RWM damping in the q(a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of the damped response does not increase significantly as the q(a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n=1 modes has resulted in stabilized operation with q_{95} values reaching as low as 1.9 in DIII-D and q(a) reaching 1.55 in RFX-mod. In addition to being consistent with the q(a)=2external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m=2 poloidal structure that is consistent with ideal MHD predictions. The experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback. PACS numbers: 52.65.-y 52.35.Py 52.30.Cv 52.35.-g 52.30.-q 52.55.Fa a) jmh2130@columbia.edu