Progress toward fully noninductive discharge operation in DIII-D using off-axis neutral beam injection

J.R. Ferron,^{1, a)} C.T. Holcomb,² T.C. Luce,¹ J.M. Park,³ P.A. Politzer,¹ F. Turco,⁴ W.W. Heidbrink,⁵ E.J. Doyle,⁶ J.M. Hanson,⁴ A.W. Hyatt,¹ Y. In,⁷ R.J. La Haye,¹ M.J. Lanctot,¹ M. Okabayashi,⁸ T.W. Petrie,¹ C.C. Petty,¹ and L. Zeng⁶

¹⁾General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA

²⁾Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550-9234, USA

³⁾Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

⁴⁾Columbia University, 116th St and Broadway, New York, NY 10027, USA

⁵⁾ University of California, Irvine, University Dr., Irvine, CA 92697, USA

⁶⁾University of California, Los Angeles, PO Box 957099, Los Angeles, CA 90095-7099, USA

⁷) FAR-TECH, Inc., 10350 Science Center Dr., San Diego, CA 92121-1136, USA

⁸⁾ Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451, USA

(Dated: 12 August 2013)

The initial experiments on off-axis neutral beam injection into high noninductive current fraction $(f_{\rm NI})$, high normalized pressure $(\beta_{\rm N})$ discharges in DIII-D [J.L. Luxon, Fusion Sci. Technol. 48, 828 (2005) have demonstrated changes in the plasma profiles that increase the limits to plasma pressure from ideal low-n instabilities. The current profile is broadened and the minimum value of the safety factor (q_{\min}) can be maintained above 2 where the profile of the thermal component of the plasma pressure is found to be broader. The off-axis neutral beam injection results in a broadening of the fast-ion pressure profile. Confinement of the thermal component of the plasma is consistent with the IPB98(y,2) scaling, but global confinement with $q_{\min} > 2$ is below the ITER-89P scaling, apparently as a result of enhanced transport of fast ions. A 0-D model is used to examine the parameter space for $f_{\rm NI} = 1$ operation and project the requirements for high performance steady-state discharges. Fully noninductive solutions are found with 4 $< \beta_{\rm N} < 5$ and bootstrap current fraction near 0.5 for a weak shear safety factor profile. A 1-D model is used to show that a $f_{\rm NI} = 1$ discharge at the top of this range of $\beta_{\rm N}$ that is predicted stable to n = 1, 2 and 3 ideal MHD instabilities is accessible through further broadening of the current and pressure profiles with off-axis neutral beam injection and electron cyclotron current drive.

PACS numbers: 52.55.-s,52.55.Fa

^{a)}Electronic mail: ferron@fusion.gat.com