Electron profile stiffness and critical gradient studies

J.C. DeBoo¹, C.C. Petty¹, A.E. White², K.H. Burrell¹, E.J. Doyle³, J.C. Hillesheim³,

C.Holland⁴, G.R. McKee⁵, T.L. Rhodes³, L. Schmitz³, S.P. Smith¹, G. Wang³ and

L. Zeng³

¹General Atomics, PO Box 85608, San Diego, California 92186-5608, USA

²Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

³University of California-Los Angeles, Los Angeles, California 90095-7099, USA

⁴University of California-San Diego, La Jolla, California 92093-0417, USA

⁵University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

Abstract. Electron profile stiffness was studied in DIII-D L-mode discharges by

systematically varying the heat flux in a narrow region with electron cyclotron heating

and measuring the local change produced in $\nabla T_{\rm e}$. Stiffness was found to be independent

of plasma toroidal rotation. A critical inverse temperature gradient scale length $1/L_{\rm Te}$

was identified at $\rho = 0.6$. Heat flux and stiffness determined by integrating the measured

dependence of the heat pulse diffusivity on $-\nabla T_{\rm e}$ agreed well with power balance

analysis. Stiffness is predicted to increase linearly with $-\nabla T_e$ for values of $-\nabla T_e$ larger

than about twice the critical value.

PACs Nos.: 52.25Fi, 52.50Sw, 52.55Fa and 52.35.Ra

1