Changes in density fluctuations as a result of resonant magnetic perturbations correlate with the density inverse scale length

S. Mordijck

Dept of Computer Science, College of William and Mary, Williamsburg, VA 23187*

R.A. Moyer

Dept of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA 92093

G.R. McKee

Dept of Engineering, University of Wisconsin, Madison, Wisconsin, WI 53706 (Dated: September 27, 2011)

Abstract

In this paper we show that the changes in ion-scale density fluctuations \tilde{n}/n induced by resonant magnetic perturbations (RMPs) exhibit the same trends as modifications to the inverse density scale length, a/L_n in the pedestal area. In a series of ITER Similar Shape (ISS) H-mode discharges in DIII-D, the n = 3 even parity RMP-coil current is varied from 4 kA up to 6.2 kA. The application of n = 3 RMPs results in an increase of a/L_n in the plasma core and a reduction in the pedestal area. Comparing the changes in a/L_n with the changes in density ion-scale fluctuations \tilde{n}/n shows that at $\Psi_N = 0.95$, the \tilde{n}/n follow the trends in a/L_n . This is suggestive that the changes in \tilde{n}/n are due to changes in the underlying density gradient rather than due to the RMPs directly in ISS H-mode discharges in DIII-D.

PACS numbers: 52.55, 52.35.Ra,52.25.Fi