Multi-field/Multi-scale Turbulence Response to Electron Cyclotron Heating of DIII-D Ohmic Plasmas

G. Wang,¹ W.A. Peebles,¹ T.L. Rhodes,¹ J.C. DeBoo,² G.M. Staebler,² J.C. Hillesheim,¹ Z. Yan,³ G.R. McKee,³ C.C. Petty,² W.M. Solomon,⁴ K.H. Burrell,² E.J. Doyle,¹ A.W. Leonard,² L. Schmitz,¹ M.A. VanZeeland,² A.E. White⁵ and L. Zeng¹

¹Physics and Astronomy Department and PSTI, University of California, Los Angeles, California ²General Atomics, P.O. Box 85608, San Diego, California

³University of Wisconsin-Madison, Madison, Wisconsin

⁴Princeton Plasma Physics Lab, Princeton, New Jersey

⁵Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT

A diverse multi-field/multi-scale core ($\rho \sim 0.5$ -0.8) turbulence response to electron cyclotron heating (ECH) of DIII-D Ohmic plasmas is reported for the first time. Long wavelength (low-k) electron temperature (\tilde{T}_e/T_e) and high-k density turbulence levels (\tilde{n}_e/n_e) are observed to strongly increase during ECH. In contrast, low-k and intermediate- $k \quad \tilde{n}_e/n_e$ showed little change, whereas the cross-phase between local low-k electron temperature and density fluctuations ($\alpha_{n_eT_e}$) was significantly modified. The increase in the electron thermal diffusivity determined from power balance is consistent with the increased turbulent transport correlated with the measured increases in low- $k \quad \tilde{T}_e/T_e$ and high- $k \quad \tilde{n}_e/n_e$. Linear stability analysis using the trapped gyro-Landau fluid (TGLF) model indicates an enhanced growth rate for electron modes (e.g. trapped electron mode, TEM) at low-k consistent with the observed modifications in \tilde{T}_e/T_e and $\alpha_{n_eT_e}$. TGLF also predicts an increase in high- $k \quad \tilde{n}_e/n_e$ turbulence.

PACS Nos.: 52.25.Fi, 52.35.Qz, 52.35.Ra, 52.55.Fa