On the application of electron cyclotron emission imaging to the validation of theoretical models of magneto-hydrodynamic activity

B.J. Tobias¹, R.L. Boivin², J.E. Boom³, I.G.J. Classen³, C.W. Domier¹, A.J.H. Donné⁴,⁵, W.W. Heidbrink³, N.C. Luhmann, Jr¹, T. Munsat⁷, C.M. Muscatello⁵, R. Nazikian⁸, H.K. Park⁶, D.A. Spong⁹, A.D. Turnbull², M.A. Van Zeeland², G.S. Yun⁶, and the DIII-D Team

¹University of California at Davis, 347 Memorial Un, Davis, California 95616, USA
²General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
³FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, P.O. Box 1207, 340 BE Nieuwegein, The Netherlands
⁴University of Technology Eindhoven, Dept. of Applied Physics, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
⁵University of California at Irvine, University Dr., Irvine, California 92697, USA
⁶Pohang University of Science and Technology, 790-784 SAN 31, Hyoja-Dong, Nam-Gu, Pohang, Gyungbuk, Korea
⁷University of Colorado at Boulder, Colorado Ave & University Heights, Boulder, Colorado 80302, USA
⁸Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543, USA
⁹Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA

Abstract. Two-dimensional imaging of electron temperature perturbations provides a powerful constraint for validating theoretical models describing magneto-hydrodynamic plasma behavior. In observation of Alfvén wave induced temperature fluctuations, electron cyclotron emission imaging (ECEI) provides unambiguous determination of the 2D eigenmode structure. This has provided support for non-perturbative eigenmode solvers which predict symmetry breaking due to poloidal flows in the fast ion population. It is shown that for Alfvén eigenmodes, and in cases where convective flows or saturated perturbations lead to non-axisymmetric equilibria, electron plasma displacements oriented parallel to a gradient in mean temperature are well defined. Furthermore, during highly dynamic behavior, such as the sawtooth crash, highly resolved 2D temperature behaviors yield valuable insight. In particular, addressing the role of adiabatic heating on time scales much shorter than the resistive diffusion time through the additional diagnosis of local electron density allows progress to be made towards a comprehensive understanding of fast reconnection in tokamak plasmas.

PAC Nos.: 52.70Gw, 52.35Bj, 52.35Py, 52.30Cv