Hybrid time dependent/independent solution for the He I line ratio
temperature and density diagnostic for a thermal helium beam with
applications in the SOL-edge regions in tokamaks

J. M. Muñoz Burgos, O. Schmitz, S. D. Loch, and C. P. Ballance

1) Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830, USA
2) Institute für Energieforschung-Plasmaphysik, Forschungszentrum Jülich, Association EURATOM-FZJ, Trilateral Euregio Cluster, D-52425 Jülich, Germany
3) Physics Department, Auburn University, 206 Allison Lab, Auburn, Alabama 36849, USA
4) Physics Department, Auburn University, 206 Allison Lab, Auburn, Alabama 36849, USA

(Dated: 15 August 2011)

Spectroscopic studies of line emission intensities and ratios offer an attractive option in the development of non-invasive plasma diagnostics. Evaluating ratios of selected He I line emission profiles from the singlet and triplet neutral helium spin systems allows for simultaneous measurement of electron density (n_e) and temperature (T_e) profiles. Typically this powerful diagnostic tool is greatly limited by the relatively long relaxation times of the 3S metastable term of helium that populates the triplet system, and on which electron temperature sensitive lines are based. By developing a time dependent analytical solution we model the time evolution of the two spin systems. We present a hybrid time dependent/independent line ratio solution that greatly improves the range of application of this diagnostic technique in the scrape-off layer (SOL) and edge plasma regions when comparing it against the current equilibrium line ratio helium model used at TEXTOR. We explore the application of this diagnostic technique in the SOL region for H-mode plasmas in DIII-D.

a) Electronic mail: munozj@fusion.gat.com.
b) Electronic mail: o.schmitz@fz-juelich.de.
c) Electronic mail: loch@physics.auburn.edu.
d) Electronic mail: ballance@physics.auburn.edu.