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ABSTRACT 

Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations 
has been a major challenge. Insights gained from numerically solving the gyro-kinetic equation 
have lead to a significant improvement of the low order TGLF model. The theoretical motivation 
and verification of this model with the velocity-space gyro-kinetic code GYRO [J. Candy and 
R.E. Waltz, J. Comp. Physics 186, 545 (2003)] will be presented. The improvement in the 
fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature 
profiles by TGLF for a dedicated collision frequency scan.   
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I.  INTRODUCTION 

The literature on the theory of electron collisions (electron-electron and electron-ion) in the 
gyro-kinetic equation is long and rich with specific models developed to suit the solution 
technique employed. Here we are interested in the fluid moment closures of the gyro-kinetic 
equation that began with the work of Hammett and Perkins1 on the Landau-fluid closure and 
progressed to gyro-Landau fluids (GLF) which include toroidal drifts.2–6  In particular, this paper 
reports the development of the electron collision model in the trapped gyro-Landau fluid (TGLF) 
equations7 that include trapped particles in a unified way. All of these fluid models use complex 
closures to retain the kinetic effects of the Landau and curvature drift poles in the linear gyro-
kinetic response function. The fluid closure coefficients are chosen to give the best fit to the local 
kinetic linear density response. This procedure is done without collisions. It is not trivial to 
include collisions in this method. A differential equation in velocity space needs to be solved in 
order to obtain a kinetic response function to fit the fluid closure to. It is not necessary to change 
the collisionless TGLF model (closures7 or saturation rule8) in order to add collisions. The 
collision model closures are independent of the other closures employed. Previous GLF models 
have included electron collisions. The GLF236 system of equations used a model for the 
collisional exchange of particles across the trapped-passing boundary. The bounce averaged 
trapped electron equations of Beer and Hammett5 include collisions as a differential operator.  

In this paper, we will start with the case of no-trapping. A numerical solution for the linear 
kinetic response function with pitch-angle scattering will be used to determine the best-fit fluid 
moment coefficients for collision terms. The pitch angle scattering differential form of the elec-
tron collision operator has been used in numerical velocity space solutions of the gyro-kinetic 
equation.9,10 These initial-value solutions were used to verify the TGLF linear stability results.  

Next the case with trapped electrons will be addressed. A model for the averaging of the 
Landau resonance by trapped electrons is introduced to obtain the kinetic solution. Fitting TGLF 
to this kinetic response did not yield a good fit to the initial-value gyro-kinetic results so the 
averaging model is suspect. However, the insights gained from the kinetic solution with trapped 
particles did lead to a better TGLF model which was the ultimate goal. In particular, the kinetic 
solution resolved the issue of what the high collision frequency limit of the trapped electron 
response should be in TGLF.  

Finally, the verification of the new collision model in TGLF with non-linear GYRO10 
turbulence simulations will be presented. The new model greatly improves the fidelity to GYRO 
compared to the previous one used for testing TGLF with experimental data.8 The new model 
does not change the overall statistical agreement of TGLF predicted temperatures with the large 
dataset of data used in Ref. 8 but it will be shown to improve the agreement with a dedicated 
experiment designed to change only the collisionality keeping other dimensionless plasma 
parameters fixed.  
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II.  WITHOUT TRAPPED PARTICLES 

The gyro-kinetic equation11 is valid for frequencies that are small compared to the gyro-
frequency of the species. For poloidal wavelengths longer than the ion gyro-radius 

€ 

kθ ρi <1, the 
electron Landau resonance frequency 

€ 

ω L = Te me k || is typically much larger than the 
diamagnetic or curvature drift frequencies. Hence, it is sufficient for the purpose of determining 
the collision model to take the limit 

€ 

kθ ρe → 0 of the circulating electron equation.  For trapped 
electron instabilities, the mode frequency needs to be less than the Landau resonance frequency 
so that the bounce motion of the electrons can average away the Landau resonance. The impact 
of electron collisions is to couple the trapped and passing electrons. Hence, only the largest term 
in the passing equation (the Landau resonance frequency) needs to be included in the kinetic 
model to be solved for the density response function. The gyro-kinetic equation for passing 
electrons with a Maxwellian background distribution function in the low-beta approximation and 
taking  

€ 

kθ ρe → 0 reduces to (suppressing the electron species label) 

€ 

−iωg− ikpξg−C g( ) = iωΦF0 E( )   , (1) 

where  

€ 

ξ = v|| /v , 

€ 

Φ= e ˜ φ /T , 

€ 

F0 =[n0 /(2π vt2 )3/2 ] e−E , 

€ 

k p = 2Eω L , 

€ 

vt = T /m , 

€ 

E = v2 /2v t2 , 

€ 

ω L = k || vt .  

Neglecting the ion momentum restoring terms for simplicity, the pitch angle scattering 
collision operator12 including both electron-electron (

€ 

Zeff  = 0 term) and electron-ion collisions 
(

€ 

Zeff  > 0 term) is 

€ 

C (g )= (ν E /2)(∂ /∂ξ )(1−ξ 2 )(∂ /∂ξ )g  with an energy dependent scattering 
rate    

€ 

ν E =
ν e
E 3/2

Zeff +
e−E

πE
+ 1− 1

2E
 
 
 

 
 
 Erf E1/2( )

 

 
 

 

 
     , (2) 

and 

€ 

ν e = 4π nee 4 ln(Λ )/(2 3/2 v te3 me
2 ), 

€ 

Zeff = ∑
a=ions

za2na /ne . 

The first order gyro-phase independent part of the fluctuating distribution function 

€ 

g  is 
defined in Ref. 11.  Expanding g in a finite series of Legendre polynomials in 

€ 

ξ , (a natural 
choice that diagonalizes the pitch-angle collision operator)  

€ 

g = gn (E)
n=0

N max

∑ Pn (ξ )   . (3) 

Equation (1) can be solved for the coefficients 

€ 

gn .  The kinetic density response function is 
defined by  

€ 

RN
kin =1−N /Φ      where      

€ 

N = d 3v∫ g /n0    . (4) 
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For at least 24 Legendre polynomials, an accurate agreement between this kinetic model and the 
analytic result7 is obtained for small growth rate 

€ 

Im ω[ ] = 0.01ω L  and small collision frequency 

€ 

ν e = 0.01ω L .   

The TGLF moment equations7 can be considered a special case of the above Legendre 
polynomial expansion with 

€ 

Nmax = 5  and the energy dependence of the coefficients prescribed 
by  

€ 

g0 = NL0
1/2 E( ) − TL1

1/2 E( ) + d RT ,T
3
5
L2
1/2 E( )

 
  

 
  
F0    , (5a) 

€ 

g1 = U|| L0
3 2 E( )−qT

3
5
L1
3 2 E( )+dST ,T

9
35

L2
3 2 E( )

 
  

 
  
2E F0    , (5b) 

€ 

g2 = ΠL0
5 2 E( )−d R||,T

3
7
L1
5 2 E( )

 
  

 
  
EF0    , (5c) 

€ 

g3 = Θ
1
3
L0
7 2 E( ) − dS ||,T

1
9
L1
7 2 E( )

 
  

 
  
2E EF0    , (5d) 

€ 

g4 = d R||,||
1
6
L0
9 2 E( ) E 2F0    , (5e) 

€ 

g5 = dS||,|| L0
11 2 E( ) 2E E 2

30
F0    . (5f) 

Where 

€ 

Lna E( ) are the generalized Leguerre polynomials. The six moments evolved by the 
TGLF equations in the 

€ 

kθ ρ e→ 0  limit are  

€ 

N =
1
n0

d 3v∫ P0 ξ( ) L0
1/2 E( )g   , (6a) 

€ 

T = −
2
3

m
n0v t2

d 3v∫ P0 ξ( ) L1
1/2 E( )g    , (6b) 

€ 

U || =
1

n0vt
d 3v∫ P1 ξ( ) L0

3/2 E( ) 2Eg   , (6c) 

€ 

qT = −
2
3

1
n0vt3

d 3vP1 ξ( ) L1
3/2 E( ) 2E∫ g    ,  (6d) 

€ 

Π =
4
3

1
n0v t2

d 3vP2 ξ( ) L0
5/2 E( ) Eg∫    , (6e) 

€ 

Θ =
4
5

1
n0vt3

d 3v P3 ξ( ) L0
7/2 E( ) 2E Eg∫    . (6f) 
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The higher velocity moments are closed in various ways for different limits 

€ 

dRT,T =
8
9

1
n0vt4

d 3v P0 ξ( )L2
1/2g∫    , (7a) 

€ 

dST ,T =
8
9

1
n0vt5

d 3vP1 ξ( ) L2
3/2 E( ) 2Eg∫    , (7b) 

€ 

d R||,T = −
8
9

1
n0vt4

d 3vP2 ξ( )L1
5 2 E( )Eg∫    , (7c) 

€ 

dS ||,T = −
8
15

1
n0vt5

d 3vP3 ξ( )L1
7 2 E( ) 2E Eg∫    , (7d) 

€ 

d R||,|| =
32
35

1
n0vt4

d 3vP4 ξ( ) L0
9 2 E( )E 2g∫    . (7e) 

€ 

dS ||,|| =
32
63

1
n0vt5

d 3vP5 ξ( ) L0
11 2 E( ) 2E E 2g∫    . (7f) 

These moments are normalized so as to have a simple mapping to the moments used in Ref. 7.   

The TGLF moment equations (in the 

€ 

kθ ρ e→ 0  limit) without trapped particles are total 
velocity space moments of Eq. (1). Grouping terms corresponding to Legendre coefficients they 
can be written 

€ 

−iωN + iωΦ + iωLU|| = 0   , (8a) 

€ 

iωT + iω L qT +
2
3
U ||

 
 
 

 
 
 = 0    , (8b) 

€ 

−iωU || + iω L Π + T + N( ) = −νU1U || −νU2 qT − νU3 dST,T    , (8c) 

€ 

−iωqT + iω L dR||,T + d RTT +
2
3
Π +

5
3
T

 
 
 

 
 
 = −νQ1 U || −νQ2 qT −νQ3dST,T    , (8d) 

€ 

−iωΠ + iωL Θ +
4
5
qT +

4
3
U||

 

 
 

 

 
 = −νΠ1Π − νΠ2 dR||, T    , (8e) 

€ 

−iωΘ + iω L dR||,|| +
27
35

d R||,T +
9
5
Π

 
 
 

 
 
 = −νΘ1Θ − νΘ2 dS ||,T    . (8f) 

The first two are from the 

€ 

P0 moment, the 3rd and 4th are from 

€ 

P1 the 5th is from 

€ 

P2 and the 
6th equation is from 

€ 

P3. In the collisionless limit, the highest irreducible moments (

€ 

d RT,T , 

€ 

d R||,T , 

€ 

d R||,||) on the left hand side are closed using the Landau-fluid closures.1,3 In the high 
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collision frequency limit 

€ 

νei » vt k || , the highest moments on the right hand side will be closed by 
the relations    

€ 

dST,T = α10U || +α11 qT    , (9a) 

€ 

d R||,T = α 20Π    , (9b) 

€ 

dS ||,T = α 30 Θ    . (9c) 

This form of closure writes the higher irreducible energy moments in terms of the lower 
energy moments of the same Legendre harmonic. The net result is that the collision coefficient 
for the lower energy moments become renormalized and can be used as fitting parameters to 
improve the model fidelity to the kinetic response function. With this closure, the TGLF 
equations become 

€ 

−iωN + iωΦ + iω L U || = 0   , (10a) 

€ 

−iωT + iω L qT +
2
3
U ||

 
 
 

 
 
 = 0  (10b) 

€ 

−iωU || + iω L Π + T + N( ) = −νUU U || − νUQ qT    , (10c) 

€ 

−iωqT + iω L dR||,T
LF + d RTT

LF +
2
3
Π +

5
3
T

 
 
 

 
 
 = −νQUU || −νQQ qT    , (10d) 

€ 

−iωΠ + iω L Θ +
4
5
qT +

4
3
U ||

 
 
 

 
 
 = −νΠ Π    , (10e) 

€ 

−iωΘ + iω L dR||,||
LF +

27
35

d R||,T
LF +

9
5
Π

 
 
 

 
 
 = −νΘΘ   . (10f) 

Where the superscript LF refers to the Landau-fluid closure1,3 form for these moments.7 The 
collision coefficients can be written in the form   

€ 

νΠ = ν e
4
5
K 4    , (11a) 

€ 

vUQ = ν e
2
5
K 2 − K1

 
 
 

 
 
    , (11b) 

€ 

νUU = ν e
2
3
K1   , (11c) 

€ 

vQQ = ν e
4
15

K 3 −
4
3
K 2 +

5
3
K1

 
 
 

 
 
    , (11d) 

€ 

νΘ = ν e
16
35

K 5    , (11e) 

€ 

ν QU =
9
10

vUQ   . (11f) 
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where  

€ 

K1 = c1 +Zeff c2 ,     

€ 

K 2 = c3 +Zeff c4 ,     

€ 

K 3 = c5 +Zeff c6 ,      

€ 

K 4 = c7 +Zeff c8 ,     

€ 

K 5 = c9 +Zeff c10    . (12) 

An alternative closure for the collision terms is to set the irreducible higher energy moments 
(

€ 

d R||,T , 

€ 

dST,T , 

€ 

dS ||,T ) to zero. This will be referred to as the truncation case. In this case, the 

€ 

K (s) are energy integrals of the scattering rate function 

€ 

ν E /ν e  weighted with different powers 
of the energy.  The truncated case coefficient values are listed in Table I. Only three 

€ 

K (s) are 
independent with 

€ 

K 4 =K1 and 

€ 

K 5 =K 3 for the truncated case. Note that the Onsager symmetry 
with respect to the energy moments constrains the 

€ 

νQU  term. 

Table I 
Collision Coefficients for Circulating Electrons 

Coefficient: c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 

Truncation: 0.601 1.128 0.798 1.128 1.795 2.257 0.601 1.128 1.795 2.257 

Optimized: 0.492 0.754 0.673 0.805 1.627 2.013 0.497 0.781 1.694 3.103 

 

Computing the response function for the TGLF moment equations and performing a 
conjugate gradient iteration of the collision coefficients 

€ 

(c1, . . ., c10) to minimize the error 
between the TGLF response functions and the numerically evaluated kinetic response functions 
gives the set of optimized coefficients in Table I. 

An illustration of the quality of fit is shown in 
Fig. 1 for 32 Legendre polynomials. This is in the 
transition region 

€ 

ν e =ω L  where the TGLF model is 
the least accurate. The optimized fit closure coeffi-
cients somewhat improve the fit of the TGLF model 
to the kinetic result (5.8% deviation) compared with 
the truncated evaluation of the coefficients (6.3% 
deviation). These deviations are averaged over 
(

€ 

νei /ω L  = 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 50.0: 

€ 

Zeff  = 
0, 2) and a range of 32 frequencies at 

€ 

Im ω[ ] = 0.01ω L . The deviations from the four mo-
ments (

€ 

N,U ||,T, qT ) needed to compute fluxes are 
included in the average deviation. These optimized 
coefficients will be used for the circulating particle 
sector of the TGLF model with trapped particles.  

Fig. 1.  Real (solid) and imaginary (dashed) parts of 
the density response function for 

€ 

ν ei ω L  = 1, 
showing kinetic solution with 32 Legendre 
Polynomials (black) and TGLF optimized model 
(gray).  
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III.  WITH TRAPPED PARTICLES 

Including trapped particles in the kinetic solution is not straight forward. Simply adding the 
mirror force term arising from the commutator of the parallel gradient operator with the parallel 
velocity (for fixed energy and magnetic moment) does not capture the most important aspect of 
the trapped particle response, the bounce averaging of the Landau resonance. In fact, the mirror 
force term has very little impact on the density response function and will be neglected. In the 
collisionless limit, it can be shown7 that setting the odd velocity moments and parallel gradients 
to zero, and taking velocity moments only in the trapped region, yields the same density response 
function as obtained from the bounce averaged kinetic equation.5  In order for the kinetic 
solution with collisions to recover the collisionless limit, some model for the impact of the 
bounce averaging of the Landau resonance is required. There is no need for a “bounce averaging 
model” for initial value solutions to the kinetic equations. It is only because we are trying to 
work with the Fourier transform of the gyro-kinetic equation into frequency, which involves 
integration over time, that the dynamic bounce averaging must be modeled.  

One model for the bounce averaging with collisions has been proposed in Ref. 13. Here the 
trapped-passing boundary used for the integration domain is modified by the collisions. The 
collisions de-trap the particles preferentially in the low energy corner of velocity space due to the 

€ 

E −3/2 dependence of the scattering rate. This model can be implemented in velocity moment 
equations like TGLF and was extensively tested by us. The short answer is that it does not give 
linear growth rates that agree with the initial value solutions of the full gyro-kinetic equations 
with pitch angle scattering such as GYRO.10 This model gives an effective trapped region 
boundary that depends on the well known parameter 

€ 

ν * =ν eRq /(vthe ε 3 2 ). It is found that this 
model gives the wrong dependence of the linear growth rates on the local aspect ratio 

€ 

ε = r /R  
and the safety factor 

€ 

q  compared to the GYRO results.  The parameter 

€ 

ν e /ω L  has already been 
shown to be a natural dimensionless metric for the circulating electrons. This has a weaker 

€ 

q -
dependence than 

€ 

ν * since the parallel mode width shrinks with increasing 

€ 

q .  It also has a 
different aspect ratio dependence than 

€ 

ν *.  

The model for bounce averaging that will be used to compute the kinetic response functions 
is similar to the model used in TGLF.7  It will be assumed that, within the trapped region, all of 
the odd moments of the distribution function and the 

€ 

k || operator vanish. This prescription has 
been shown to exactly reproduce the bounce averaged response in the collisionless limit. The 
distribution function can still be represented by a finite expansion of Legendre Polynomials that 
are continuous across the trapped-passing boundary. Defining the passing region projection 
operator as  

€ 

A ξ{ } =
ξ  if  ξ ≥ ft

0  if  ξ < ft

 
 
 

  

 
 
 

     . (13) 
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Where 

€ 

ft = 1−B(θ )/Bmax  is the local trapped-passing boundary value of 

€ 

ξ . 

We can write the distribution function as a sum of even and odd parts where 

€ 

geven = ∑
n=even

gn E( ) Pn ξ( )    , (14a) 

€ 

godd = ∑
n=odd

gn E( ) Pn ξ( )    . (14b) 

The kinetic equations separate into an even part:  

€ 

−iωgeven + ikp A ξ godd{ } − c geven( ) = − iωΦF0    , (15a) 

and an odd part: 

€ 

A −iωgodd + ikp ξ geven − c godd( ){ } = 0    . (15b) 

The kinetic response function for the total density can then be computed using the same formula 
[Eq. (4)] as for the case without trapped particles. Even with 32 Legendre polynomials, the 
kinetic response function, for 

€ 

ν e = 0.01ω L , does not agree with the analytic collisionless result 
near zero real frequency unless the growth rate is taken to be fairly large 

€ 

Im ω[ ] = 0.5ω L . For 
smaller growth rates there is damping due to numerical resolution error. The numerical damping 
problem does not resolve even for 64 Legendre Polynomials and erratic oscillation of the 
solution set in due to loss of precision for this case.  These numerical difficulties will be simply 
avoided by using a large growth rate for the TGLF model fitting. 

The TGLF moment equations with trapped particles and collisions are split into three sets of 
moments. For example the total density moment can be written7 

€ 

N =
1
n0
∫ d 3vg = N u 1( ) − N u ft( ) + N t ft( )    . (16) 

The first moment is for untrapped particles over all velocity space. The second moment is for the 
untrapped particles over the trapped region. The first two are not physical moments but are a 
mathematical trick to split up the integral over the passing region into two terms. The physical 
untrapped particle density is then the difference of these two moments. The third moment is the 
trapped particle density moment over the trapped region. The three different types of moments 
are treated independently which allows for discontinuity of the distribution function at the 
trapped passing boundary. This approach makes it possible to achieve an accurate representation 
of the collisionless density response function with trapped particles for a system of equations 
with a small number of velocity moments.7 The building blocks of the TGLF equations are 
moments over a wedge in velocity space 

€ 

ξ ≤ ft  since even the full velocity space moment is just 
a wedge moment with 

€ 

ft =1. For the wedge moment equations it is natural to expand the 
distribution function in Legendre polynomials with a rescaled argument 

€ 

g ft( ) = gn E( )Pn ξ ft( )
n=0

N max

∑ / ftn+1   . (17) 
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The definition of the wedge moments is the same as Eq. (6) with the Legendre polynomials 
replaced by 

€ 

Pn (ξ )→Pn (ξ / ft ) ftn .  

Taking moments of Eq. (1) over the trapped wedge in velocity space gives the system of 
equations for the untrapped wedge moments 

€ 

−iωN u + iω ft Φ + iω L U ||
u = ν N

1− ft2( )
ft4

Πu    , (18a) 

€ 

−iωT u + iω L qT
u +

2
3
U ||
u 

 
 

 
 
 = νT

1− ft2( )
ft4

Πu    , (18b) 

€ 

−iωU ||
u + iω L Πu + ft2T u + ft2N u( ) =−νUUU ||

u −νUQqT
u +νU

1− ft2( )
ft4

Θu    , (18c) 

€ 

−iωqT
u + iω L dR||,T

u,LF + ft2dRTT
u,LF +

2
3
Πu +

5
3
ft2T u 

 
 

 
 
 =−νQUU ||

u −νQQqT
u +νQ

1− ft2( )
ft4

Θu   ,(18d) 

€ 

−iωΠu + iω L Θu +
4
5
ft2qT

u +
4
3
ft2U ||

u 
 
 

 
 
 = −νΠΠu    , (18e) 

€ 

−iωΘu + iω L dR||,||
u,LF +

27
35

ft2d R||,T
u,LF +

9
5
ft2Πu 

 
 

 
 
 = −νΘΘu    . (18f) 

For 

€ 

ft =1 this reduces to our previous result [Eq. (8)]. The collision terms multiplied by 

€ 

(1− ft2 )  come from the derivative of the distribution function with respect to 

€ 

ξ  at the trapped 
passing boundary. These boundary terms couple all of the Legendre polynomial moments 
together. The closure like Eq. (9) must be supplemented by setting the higher Legendre moment 
terms to zero in each equation. This choice can be justified by the fact that the collisional 
damping rate increase like 

€ 

n(n+1), where 

€ 

n  is the Legendre index.  Hence, the higher Legendre 
index terms will damp away faster than the lower ones and only the lowest index collision term 
is retained for each equation.   

The trapped particle moment equations follow from the even wedge moments with the odd 
moments set to zero and 

€ 

k || = 0 .  

€ 

−iωN t + iω ft Φ = ν N
1− ft2( )
ft4

Π t    , (19a) 

€ 

−iωT t = νT
1− ft2( )
ft4

Π t    , (19b) 

€ 

−iωΠ t = −νΠ Π t    . (19c) 

If solved as a linear eigensystem, these equations give three eigenvalues 

€ 

−iω = (0, 0, −νΠ ) . 
Hence, there is no damping of the trapped density 

€ 

N t  or total pressure temperature 

€ 

T t .  
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Transforming from frequency to time this system of equations can be solved as an initial 
value system giving the solution 

€ 

N t − ft Φ = N∞
t −

ν N
νΠ

1− ft2( )
ft4

Π0
t e−νΠ t    , (20a) 

€ 

T t = T∞t −
νT
νΠ

1− ft2( )
ft4

Π0
t e−νΠ t    , (20b) 

€ 

Π t = Π0
t e−νΠ t    . (20c) 

The density and temperature have an impulse driven by the boundary coupling to the initial 
stress 

€ 

Π 0
t  that is damped to an asymptotic value 

€ 

(N∞
t , T∞t ) that is a constant. The stress damps to 

zero. This solution is also the solution of the system of equations 

€ 

∂
∂t

N t − ftΦ( ) = −νΠ N t − ftΦ−N∞
t( )    , (21a) 

€ 

∂
∂t
T t = −νΠ T t −T∞t( )    , (21b) 

€ 

∂
∂t

Π t = −νΠ Π t    . (21c) 

This form of the equations will be called the “transferred damping” form since the damping of 
the stress has been transferred to the density and temperature equations through the trapped 
boundary terms. Transforming this system to frequency gives the eigenvalues characteristic of 
the damping of the initial impulse 

€ 

−iω = −νΠ ,−νΠ ,−νΠ( )  whereas the original moment 
equations gave eigenvalues characteristic of the asymptotic solution. A similar analysis of the 
untrapped wedge moment equations [Eq. (18)] gives the same transferred damping form for the 
boundary terms for the even moments. The odd moments also pick up transferred damping terms 
from their trapped boundary coupling. If higher Legendre polynomial terms are kept, then there 
are more trapped boundary terms in all of the equations. The boundary terms all have the 
property that they have the overall factor 

€ 

(1− ft2 )  that vanishes when all of the particles are 
trapped 

€ 

ft =1. The closure strategy will be to add transferred damping terms to replace the 
trapped boundary terms. The optimal values obtained for the no-trapped particle case will be 
used for the collision coefficients that are not from the trapped boundary. A simple form of this 
model for the trapped boundary collision effects for the trapped particles is  

€ 

−iω N t − ftΦ( ) = −ν B 1− ft2( ) N t − ftΦ−N∞
t( )    , (22a) 

€ 

−iωT t = −ν B 1− ft2( ) T t −T∞t( )    , (22b) 

€ 

−iωΠ t = −νΠΠ t −ν B 1− ft2( ) Π t −Π∞
t( )   . (22c) 
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A boundary term has been added to the stress equation to account for the coupling to higher 
velocity moments neglected in Eq. (19). This is the form used for all of the TGLF collision 
models to date. The coefficient 

€ 

ν B  is optimized to fit exact initial value gyro-kinetic results. 
There are three versions that have been developed with different asymptotic limits. The first two 
were hand fit to a database of linear gyrokinetic stability runs primarily for trapped electron 
modes over a range of parameters. The full toroidal equations were used for the fitting. The 
resulting models are as follows: 

Model 0:  

€ 

Ne∞
t = − ftΦ,  Te∞t = 0,  Π e∞

t = 0,  ν B = ν e
Λ1

1+Λ 2 ν e ωde( )    , (23a) 

€ 

Λ1 = 3.1 ki Max[0.36+0.1 R
Lne

,0.0]+Max[ R
Lne

+10.8,1.8] 1.5 1−Tanh R
12.6Lne

 

 
 

 

 
 

2 

 
 
 

 

 
 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 
 
 

  

 
 
 

  
,(23b) 

€ 

Λ 2 = 2.1ki +8.0ki
2( ) ν e ωde( )   . (23c) 

Model 1: 

€ 

Ne∞
t = 0,  Te∞t = 0,  Π e∞

t = 0,  ν B =ν e
Λ1

1+Λ 2 ν e ωde( )
   , (24a)

 

€ 

Λ1 = 3.79 0.41+0.7 ki
k s0
 

 
 

 

 
 
1.7

1.0+1.4 ki 0.38( ) 1.0+
ki
0.38
 
 
 

 
 
 
4 

 
  

 

 
  

 
 
 

  

 
 
 

  
   , (24b)

 

€ 

Λ 2 = 4.63 ki ν e ωde    . (24c) 
where for both models 

€ 

ki = k y ∑
a=ions

(Tamana Za /T0m0ne ) / ∑
a=ions

(na Za /ne), 

€ 

ks0 = k y Tama /T0m0 , 

€ 

k y = (nq /r )[ T0 /m0 /(eB0 /m0c)], 

€ 

R /Lne = −(R /ne)(dne /dr), 

€ 

ωde = (k y /R)Te B0 T0B( ) T0 m0
 
with 

€ 

T0 , 

€ 

B0 , 

€ 

m0 the units of temperature, magnetic field 
and mass. 

The main difference between these two models is the asymptotic density limit 

€ 

Ne∞
t . Both use 

the electron curvature drift at the outboard mid-plane 

€ 

ωde  as a reference frequency since this is 
the resonant frequency in the toroidal trapped electron moment equations. Neither model was fit 
to non-linear gyrokinetic turbulence simulations. The models are not robust in that they required 
corrections for parameters 

€ 

(R /Lne, k y) other than the normalized collision frequency 

€ 

ν e /ωde . 
Only model 1 was used for prediction of experimental transport8 since it does not require density 
gradient corrections. After construction of these models, non-linear GYRO runs were performed. 
A comparison of model 1 used in TGLF (circles) with GYRO results (squares) is shown in 
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Fig. 2. The main defect appears to be that the large collision frequency residual of the ion 
thermal transport is too large. The model-1 particle flux [Fig. 2(c)] also reduces to the GYRO 
result without any trapped particles (triangles) rather than the correct GYRO case with trapped 
particles.  Similar results are obtained for model-0. The high collision frequency residual energy 
fluxes are hard to match since they remains well above the no-trapped electron value for the 
fluxes [triangles in Fig. 2(a,b) for GYRO]. In both models, the boundary term becomes 
independent of collision frequency 

€ 

ν B→ωde Λ1 /Λ 2  for large 

€ 

ν e. This determines the residual 
effect on the fluxes and prevents the energy fluxes from reducing to the no-trapped particle level. 
The truncation case of the circulating particle collision coefficients in Table I were used in these 
two models but substituting the optimized coefficients does not change the results significantly.  

 

Fig. 2.  Ion energy flux/

€ 

(neTecsρ s2 /a2 ) (a), electron 
energy flux/

€ 

(neTecsρ s2 /a2 ) (b) and electron particle 
flux/

€ 

(necsρ s2 /a2 ) (c) for the GA-STD case [Eq. (27)] 
vs. 

€ 

ν ei ω L  for GYRO (squares), TGLF model-1 
(circles) and for GYRO without trapped particles 
(triangles).  

 The main topic of this paper is a new collision model (model 2). It still has the same 
transferred damping form [Eq. (22)] but is fit to the kinetic solution in the slab limit with the 
bounce averaging model described above. As mentioned before, the Landau resonance frequency 
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is the largest frequency in the equation for the circulating electrons at ion-scale poloidal 
wavelengths. If 

€ 

k || is set to zero, then there is no collisional damping of the 

€ 

g0  moment (density, 
temperature, etc.) in the kinetic model [Eq. (15)]. This must also be true when there are trapped 
particles. The trapped particle density gets damped through transfer from the boundary 
connection to circulating particles, but if there is no parallel wavenumber, then even the 
circulating particle density is not damped by collisions. Hence the model for the boundary 
transfer terms in the trapped particle equations should have the property that the coefficient 

€ 

νB  
vanishes when 

€ 

k ||→0 . For a power law form, this gives 

€ 

ν B ∝ω L (ν e /ω L )α  with 

€ 

1>α > 0 . 
Taking 

€ 

ν B ∝ ν eω L  is found to be nearly optimal for fitting TGLF to the kinetic response 
function. Already this new model departs from the previous ones by identifying the Landau 
frequency as the reference frequency for the model rather than the curvature drift frequency. 

Asymptotic in time is the same as the large collision frequency limit for the kinetic equations. 
Taking the density moment of the distribution function over just the trapped region for the 
solution to the kinetic model with trapped particles [Eq. (15)], and comparing it with the density 
moment over the trapped region for the solution to the kinetic model without trapped particles 
[Eq. (1)], it is found that the two moments become nearly equal to each other for large collision 
frequency. Thus, the asymptotic trapped particle density limit is the projection to the trapped 
region of the distribution function without trapped particles or bounce averaging. Taking into 
account the different Legendre Polynomial arguments and truncating the higher moments, the 
mapping between the asymptotic trapped moments and the 

€ 

ft =1 wedge moments is  

€ 

N∞
t ft( ) = N∞

u ft( ) = ft N u 1( )−
3
4
ft 1− ft2( )Πu 1( )   , (25a) 

€ 

T∞t ft( ) =T∞u ft( ) = ft T u 1( )−
1
2
ft 1− ft2( )Πu 1( )    , (25b) 

€ 

Π∞
t ft( ) =Π∞

u ft( ) = ft3Πu 1( )    . (25c) 

These are the asymptotic terms in Eq. (22) for the new model (model-2). Since both the trapped 
moments and the wedge untrapped moments over the trapped region have the same asymptotic 
limit, the physical total moments [Eq. (16)] approaches just the 

€ 

ft =1 moment.  A similar 
asymptotic limit model was tried for the odd moments of the circulating distribution function in 
the trapped wedge. The numerical optimization set the coefficients of the odd boundary transfer 
terms to zero so these terms will not be presented in detail.   

An excellent fit (5.2% fractional deviation average over 

€ 

ν e /ω L  = 0.01, 0.05, 0.5 to the 
kinetic response of the total density can be obtained using the asymptotic limits Eq. (25) in 
Eq. (22), for the numerically determined value of 

€ 

ν B =1.55 k pν ei   for 

€ 

Zeff =1. An example 
of the fit is shown in Fig. 3.  The deviation is low partly because the growth rate is large so the 
poles of the TGLF response function are far below the real frequency axis. Lowering the growth 
rate increases the deviation and gives a larger optimized fit coefficient. This increase is due to 
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the spurious numerical damping of the trapped particles that gets stronger at low collision 
frequency, growth rate and real frequency.  

 
Fig. 3. Real (solid) and imaginary (dashed) parts of the 
density response function for 

€ 

ν ei ω L =0.05, showing 
kinetic solution with 32 Legendre polynomials (black) 
and TGLF model-2 with optimized fit (gray).  

Unfortunately, the numerically optimized fit to the kinetic model does not agree with the 
non-linear GYRO simulation fluxes. However, simply adjusting the leading constant down by a 
factor of 10.1 does give good agreement with GYRO as shown in Fig. 4. It appears that the 
kinetic model matches the asymptotic behavior and the square root of the collision frequency 
dependence of the trapped boundary terms, but gives too strong a coupling. This may be due to 
the use of global Legendre polynomials, since this makes all of the derivatives of the distribution 
function continuous at the trapped-passing boundary. Other numerical schemes, besides 
Legendre polynomials, and other models for the bounce averaging effect, have been tried for the 
kinetic model but none resulted in a good fit to GYRO without adjustment. More complicated 
versions of the TGLF model were also tried, some giving improved agreement with the kinetic 
model, but none improved agreement with GYRO. The bottom line is that it does not really 
matter if the kinetic model of bounce averaging is good, what ultimately matters is if the TGLF 
collision model gives a good fit to GYRO. Using the form of the TGLF model above which was 
determined by studying the properties of the kinetic equations, a good fit to GYRO is obtained 
with the coefficients  

Model-2: 

€ 

ν B = 0.114 vte k || ve 1+ 0.82  Zeff( )    . (26) 

The 

€ 

Zeff  dependence has been found by fitting to GYRO with 

€ 

Zeff  = 0, 1.0. Collision frequency 
scans of the GA-STD case (see the next section) were used for this fitting. The 

€ 

Zeff  = 1.0 case is 
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shown in Fig. 4 . Since the new model-2 is fit to a collision scan from GYRO rather than an 
exact kinetic solution it must be verified with more GYRO runs that were not used for the fit.  

 
Fig. 4.  Ion energy flux/

€ 

(neTecsρ s2 /a2 ) (a), electron 
energy flux/

€ 

(neTecsρ s2 /a2 ) (b) and electron particle 
flux/

€ 

(necsρ s2 /a2 ) (c) for the GA-STD case [Eq. (27)] 
vs. 

€ 

ν ei ω L  for GYRO (squares), TGLF model-2 
(circles).  
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IV.  VERIFICATION WITH GYRO AND VALIDATION WITH EXPERIMENT 

This new TGLF model [Eqs. (22), (25), (26)] has been extensively verified with 64 GYRO 
non-linear turbulence simulations with collisions. The runs were grouped as scans around two 
reference points. 

GA-STD:  

€ 

R /a = 3, 

€ 

r /a = 0.5, 

€ 

q = 2, 

€ 

ˆ s =1, 

€ 

a /LTe = a /LTi = 3, 

€ 

a /Lne = a /Lni =1,  

€ 

Te =Ti , 

€ 

ne = ni , 

€ 

β = 0, 

€ 

ˆ ν e = 0 , 

€ 

κ =1, 

€ 

sk = 0 , 

€ 

δ = 0 , 

€ 

sδ = 0    . (27) 

LM01:   

€ 

STD+  r /a = 0.5 , 

€ 

a /LTe,i = 2.0 , 

€ 

κ =1.5 , 

€ 

sκ = 0.17, 

€ 

ˆ ν e =1.0    . (28) 

The parameters changed from these reference points for each scan are given in Table II. The 
GYRO normalization convention 

€ 

ˆ ν e =ν e a / Te /mi  is used. 

Table II 
GYRO Parameter Scan Details 

Scan Case Scanned Parameters Runs 

55 STD 

€ 

q -scan, 

€ 

q=1.5–4.0, with 

€ 

ˆ ν e=1.0 4 

56 STD 

€ 

q -scan, 

€ 

q=2.0–5.0, with 

€ 

ˆ ν e=0.1,1.0, 

€ 

r /a=0.75 8 

58 STD 

€ 

a /LT -scan, 

€ 

a /LT =2.0–4.0 @

€ 

ˆ ν e=0.1, 

€ 

a /LT =1.5–4.0 @ 

€ 

ˆ ν e=1.0 11 

60 STD 

€ 

ˆ ν e-scan, 

€ 

ˆ ν e=0.0–3.0 @ 

€ 

r /a=0.5, 

€ 

ˆ ν e=0.0–0.2 @ 

€ 

r /a=0.75 16 

62b STD 

€ 

r /a -scan, 

€ 

r /a=0.01–1.0 @ 

€ 

ˆ ν e=1.0 5 

70 LM01, 

€ 

q -scan, 

€ 

q=2–5, @ 

€ 

ˆ ν e=0.1,1.0 11 

72 LM01 

€ 

ˆ ν e-scan, 

€ 

ˆ ν e=0.0–1.5 9 

 

All of the GYRO runs used the same grid resolution with 16 mode numbers 

€ 

0 ≤ k y ≤ 0.75  
where and 

€ 

n  is the toroidal index, 

€ 

ρ s  is the reference gyroradius. A box size of 

€ 

[Lx /ρ s, Ly /ρ s ]= 126,126[ ]  and 

€ 

nr =170  radial grid points were used. The fractional 
deviation of the TGLF effective diffusivities from GYRO for each scan are charted in Fig. 5. In 
each scan the new collision model (model-2) is better than model-1. The average deviations 

€ 

χ i ,χ e[ ] for the whole dataset of 64 cases dropped from [0.24,0.27] for model-1 to [0.10,0.13] 
for model-2.  The collision frequency scan at the STD point used to fit the overall coefficient of 
the boundary terms is included in scan 60. Scan 58 changes the temperature gradients together 
and the two LM01 scans (70,72) change the base geometry shaping compared to the STD cases. 
The other scans are all either 

€ 

q -scans or 

€ 

r /a  scans in order to verify the two main dependencies 
in the TGLF boundary model (

€ 

k || ∝1/Rq, 

€ 

ft ≈ 2r /R , for 

€ 

r /R«1). The effective thermal 
diffusivity as a function of aspect ratio (scan 62b) and 

€ 

q  (scan 55) are shown in Fig. 6 for the 
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STD case with 

€ 

ˆ ν e = 1.0. The new model-2 tracks the GYRO results very well but model-1 has 
the wrong slope in both parameters.  

   
Fig. 5.  Bar chart of fractional deviation between 
TGLF and GYRO effective electron (a) and ion 
(b) energy diffusivities (i.e. flux/gradient). 
Statistics for model-1 are in gray and model-2 are 
in black.  

 Fig. 6.  

€ 

q -scan (a) and 

€ 

r /a  scan (b) around the GA-
STD point showing electron (gray) and ion (black) 
effective thermal diffusivities for GYRO (circles), 
TGLF-model-1 dashed, and TGLF-model-2 solid.  

The new collision model has been tested with experimental data using the large tokamak 
database (96, L-modes and H-modes, from DIII-D, JET, TFTR) of Ref. 8. Figure 7 shows the 
predicted versus experimental incremental stored energy for the 96 discharges using TGLF with 
the new collision model (TGLF-model-2). We find the statistical average of the rms deviation of 
the TGLF predicted temperatures from the 

€ 

q =1 surface to 

€ 

ρ = 0.84  show very little change from 
the TGLF-model-1 results published in Ref. 8. The rms error in 

€ 

Winc  is 21% with an effective 
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offset of 

€ 

〈Rw 〉−1 = 2%. The corresponding average rms errors in (

€ 

Ti, Te ) for model-2 are 
[15%,16%] and differ from the model-1 values by less than 0.5%.  

 
Fig. 7.  Predicted incremental stored energy Winc from TGLF-
model-2 vs. experimental 

€ 

Winc  for 96 L- and H-mode 
discharges.  

Looking in detail at a dedicated experiment14 designed to change the collisionality while 
keeping other dimensionless plasma parameters important to gyro-kinetic turbulence fixed does 
show a difference between the two models . The ion and electron temperature deviation 

€ 

σT  and 
offsets 

€ 

fT  defined by  

€ 

σ T =
1
N

ε j
2

j=1

N

∑ TrmsEXP  ,        

€ 

fT =
1
N

ε j
j=1

N

∑ TrmsEXP    , (29a) 

where  

€ 

TrmsEXP =
1
N

T j
EXP( )2

j=1

N

∑       and      

€ 

ε j = T j
TGLF − T j

EXP    , (29b) 

are shown in Fig. 8 for the three DIII-D L-mode discharges comprising a factor of eight scan in 

€ 

ν *. The new collision model has a lower deviation from the data than model-1. The old model 
clearly exhibits a trend in the offsets changing from negative (predicted temperature low) to 
positive (predicted temperature high) as 

€ 

ν * is decreased. That trend is still present in the new 
model but to a lesser extent.  There may be some contribution to this trend from the simple 
Chang-Hinton15 ion thermal neoclassical diffusivity model used. There was also a pair of 
H-modes in the experiment of Ref. 14. For the DIII-D H-mode 

€ 

ν * scan we observed little change 
in the predicted profiles when the collision model is changed in TGLF. For both H-mode cases, 
the ExB shear has suppressed the low-

€ 

k  modes resulting in the ion thermal transport being close 
to neoclassical and the electron thermal transport being dominated by ETG modes. Since the 
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change in the collision model impacts mainly the low-

€ 

k  modes, which are stable in the H-mode 
pair, the insensitivity to the collision model is not unexpected. Overall, we find that improving 
the agreement of TGLF with GYRO also improved the agreement with experiment. This is a 
positive indication that the drift-wave turbulence being modeled is contributing to the transport 
in tokamaks. 

 
Fig. 8.  RMS error and offset in the ion (a,c) and electron (b,d) temperature 
profiles vs. discharge using the TGLF-model-1 (gray) and TGLF-model-2 
(black) models for a DIII-D L-mode collisionality scan. Discharges 90765 and 
90753 correspond to the high and low collisionality cases respectively.  
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V.  SUMMARY 

In this paper a new model for electron collisions in the TGLF equations has been developed. 
The new model (model 2) consists of numerically optimized collision coefficients (Table I) for 
the circulating electron equations [Eq. (10)] and the transferred damping form [Eq. (22)] of the 
trapped-passing boundary terms with new asymptotic limits [Eq. (25)] and a simpler coefficient 
[Eq. (26)].  The goal was to solve the local gyro-kinetic equation for the fluid moment 
perturbation response functions (density, pressure, parallel flow, parallel energy flux) 
numerically with pitch angle scattering collisions. This would then be used to fit a reduced model 
for the TGLF equations. This goal was realized for the case without trapped particles resulting in 
a modest improvement of the TGLF model for the circulating particle sector. Extending this to 
trapped particles proved difficult due to the need to introduce a model for the bounce averaging 
of the Landau resonance by the trapped particles.  Fitting TGLF to the kinetic response functions 
resulted in a collisional damping of trapped electrons that was too strong. However, a simple 
adjustment of the overall strength of the trapped boundary coefficient did result in a good fit of 
TGLF fluxes to GYRO nonlinear simulations. The kinetic model informed the physics choices 
for the TGLF model in several ways that led to success. The first was the observation that the 
Landau resonance frequency of the passing electrons is the largest frequency and it sets the scale 
for the collision frequency. Thus, the natural dimensionless parameter for gyro-kinetic collisions 
is not the neoclassical collisionality 

€ 

ν * but is the ratio of the electron collision frequency to the 
electron Landau resonance frequency 

€ 

ν eL =ν e ω L ≅ν eπR / 2Te me , where an estimation of 
the parallel wavenumber has been used 

€ 

k || = (−i /Rq ) (∂ /∂θ )≈1/(Rπ ). Secondly, the kinetic 
theory showed the trapped boundary terms were all proportional to the factor 

€ 

(1− ft2 ) . Third, the 
trapped boundary terms should have no effect if the parallel wavenumber is zero constraining the 
trapped boundary model coefficient 

€ 

ν B( )  to be proportional to 

€ 

ω L ν e ω L( )α  with 

€ 

1>α > 0 . 
Finally, the large collision frequency limit of the kinetic model determined the asymptotic limit 
for the TGLF model to be the projection of the passing particle distribution without trapping to 
the trapped region [Eq. (25)]. These four physics constraints determined the transferred damping 
form of the TGLF trapped boundary model [Eq. (22)] up to three fitting parameters (one for 

€ 

Zeff  = 0 and one for 

€ 

Zeff  > 0 and the exponent 

€ 

α ). The kinetic equation with a specific bounce 
averaging model did not yield the correct strength, but did give the correct exponent 

€ 

α = 0.5( ) . 
Direct fitting to GYRO fluxes was possible for the last two parameters. The new model captures 
the correct dependence on the primary parameters (

€ 

q , 

€ 

r /R ) that it depends upon as validated by 
non-linear GYRO simulations. The new model was found to improve the agreement of TGLF 
predicted temperatures with experiment for dedicated collision frequency scans. 
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