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I. INTRODUCTION

The goal of this paper is to develop an understanding of linear high-n drift waves in high-

beta plasmas with strong cross-sectional shaping. The approach is exact within the context

of standard gyrokinetic theory [1–3], without approximations (for example, bounce-averaged

electrons, long wavelength, reduction from integro-differential to differential equations, etc)

usually applied for analytical tractibility or numerical simplicity.

In high-beta, strongly shaped plasmas like in the National Spherical Torus Experiment

(NSTX) [4], numerous branches of closely-spaced unstable eigenmodes exist. In our experi-

ence, when modes are closely spaced, it is difficult and time-consuming to resolve the most

unstable mode using the linear initial-value approach. To overcome these and other diffi-

culties encountered in simulating NSTX plasmas, we have developed a new, more efficient

method to compute unstable linear eigenvalues and eigenvectors. The method is valid for

tokamak plasmas with arbitrary shape, and can retain both the compressional and trans-

verse components of the magnetic perturbation. The new method is a simple extension

of the GYRO code [5], and reuses the existing discretization schemes in both real and ve-

locity space. Existing methods for solving the linear gyrokinetic eigenvalue problem fall

into two general categories: gyrokinetic eigenvalue solvers, which use an iterative approach

to compute eigenvalues of the relatively large gyrokinetic response matrix [6, 7], and field

dispersion-relation solvers, which compute the zeros of the much smaller dielectric matrix

using a direct method. The former solvers are too expensive for routine linear analysis and

are not discussed further. On the other hand, there are numerous examples in the literature

of the latter method, the earliest and still one of the most capable being due to Rewoldt

[8]. Certain solvers distinguish themselves with a particular capability: for example, global

capability [9] or the ability to compute stable eigenmodes [10]. The present solver is unique

in that all the linear physics capabilities of GYRO can be retained, including pitch-angle

collisions (although at significantly increased computational expense), global effects (since

the ballooning transform is not used), finite plasma rotation, general plasma shape and full

electromagnetic perturbations. The solver is parallelized, with all costly matrix operations

(LU decomposition, inverse, matrix-matrix multiply) implemented fully in BLAS and LA-

PACK. A typical collisionless electromagnetic eigenvalue and eigenvector can be computed

at standard resolution in about 5 seconds on a single 2.66GHz core.
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Most studies of gyrokinetic transport, even in high-beta plasmas, have retained only the

transverse electromagnetic perturbations, δA‖, and neglected the compressional magnetic

perturbations, δB‖. While for most experimentally-relevant gyrokinetic studies of tokamaks,

the impact of including δB‖ is negligible due to the low beta, these effects can be large in

spherical torus machines. Before the recent addition of δB‖ to GYRO, GS2 [11, 12] was

the only nonlinear gyrokinetic code to include the compressional response. For this reason,

gyrokinetic studies of transport in high-beta plasmas including δB‖ have been done almost

exclusively with GS2. In early linear simulations with GS2, Kotschenreuther et al. [13]

showed that neglecting δB‖ in high-beta plasmas can lead to a significant underestimate of

the ion-temperature-gradient (ITG) growth rate, as finite δB‖ counteracts the stabilizing

influence of the pressure-induced diamagnetic well [14]. Subsequently, studies of the effects

of δB‖ have focused primarily on experimental modeling of spherical tokamak plasmas. In

NSTX plasmas, the role of the large trapped electron fraction in stabilization of the kinetic

ballooning mode (KBM) has been examined [15], and the stabilizing influence of δB‖ on

electron-temperature-gradient (ETG) modes has also been reported [16]. It was similarly

reported for high-mode (H-mode) plasmas in the Mega-Ampère Spherical Tokamak (MAST)

[17] that the stabilization of ETG modes is sensitive to the inclusion of δB‖ [18]. In contrast,

studies of MAST plasmas also found that δB‖ is not important for a description of the micro-

tearing instability [19].

In the present work, we use the new GYRO eigensolver to systematically analyze the

gyrokinetic stability of high-beta plasmas. The results in this paper are based on parameter

scans about nominal values derived from an NSTX discharge centered at r/a = 0.7. In

the analysis, we include full (i.e., compressional and transverse) electromagnetic perturba-

tions and, through calculation of both dominant and sub-dominant eigenmodes, can identify

regimes in which the oft-neglected compressional magnetic component of the perturbation

is important.

The remaining content of this paper is organized as follows. In Sec. II, the basic simu-

lation equations and eigensolver approach are described. In Sec. III, numerical results from

linear gyrokinetic simulations of high-beta plasmas with the eigenvalue solver are presented.

Finally, a brief summary is given in Sec. IV. We also give a description of the numerical

implementation of the eigenvalue solver in the Appendix.
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II. GYROKINETICS AT HIGH BETA IN SHAPED PLASMAS

In this section we write the equations for the full gyrokinetic-Maxwell system [1–3] in-

cluding compressional waves, valid for arbitrary plasma cross-sectional shape, including, for

example, up-down asymmetry. To make the beta-dependence of the equilibrium clear, we

also make connection to the Grad-Shafranov equation. The system of integro-differential

equations is then solved, without approximation, to obtain the linear Maxwell dispersion

relation.

A. Local plasma equilibrium

In what follows we briefly summarize the local geometry method [20] suitable for both

neoclassical and gyrokinetic analysis in the case of general flux-surface shape. First, one

writes the magnetic field in Clebsch form [21] using nonorthogonal field-aligned coordinates

(ψ, θ, α):

B = ∇α×∇ψ such that B · ∇α = B · ∇ψ = 0 . (1)

The angle α is written in terms of the toroidal angle ϕ as α
.
= ϕ + ν(ψ, θ). In Eq. (1),

ψ is poloidal flux divided by 2π, and θ simultaneously refers to an angle in the poloidal

plane (at fixed ϕ) and a parameterization of distance along a field line (at fixed α). In these

coordinates, the Jacobian is

Jψ .
=

1

∇ψ ×∇θ · ∇α =
1

∇ψ ×∇θ · ∇ϕ . (2)

By writing B in standard form

B = ∇ϕ×∇ψ + I(ψ)∇ϕ , (3)

we can relate ν to the current function, I, according to

ν(ψ, θ) = −I(ψ)

∫ θ

0

Jψ |∇ϕ|2 dθ . (4)

Next, we introduce the effective magnetic field strength, Bunit [20, 22], defined with reference

to a global equilibrium through the relation

∂ψ

∂r
=
r

q
Bunit . (5)
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It is important to note that Bunit, unlike B, is constant on a flux surface. In Eq. (5), r is

the effective minor radius of the flux surface, which is defined for arbitrary plasma shape in

Ref. [20].

B. Isolation of the MHD pressure-gradient effect

In analyses based on model s-α geometry, it is customary to compute stability boundaries

as a function of the so-called MHD-α parameter (see, for example, Ref. [15])

αp = −q2R0
8π

B2
0

dp

dr
, (6)

where R0 and B0 are the on-axis major radius and magnetic field, respectively, and p =
∑

a naTa is the total plasma pressure. Keeping in mind that generalizations of αp to general

geometry are not unique, we define a generalized MHD-α parameter

αp,unit = −q2R0
8π

B2
unit

dp

dr
, (7)

where R0 is the effective major radius defined in Ref. [20]. To effectively adjust αp,unit without

modifying the background gradients (i.e., without modifying the diamagnetic frequency in

the gyrokinetic equation) we introduce an artificial scaling parameter

cp′
.
= geometric pressure-gradient scaling parameter . (8)

In the sections that follow we will show explicitly how this parameter appears in the Grad-

Shafranov equation and in the the drift velocity. In terms of cp′ , the effective MHD-α

parameter is

αp,unit → −q2R0
8π

B2
unit

dp

dr
cp′ . (9)

C. The Grad-Shafranov equation

The flux-surface shape is determined by the Grad-Shafranov equation

R2∇ ·
(∇ψ
R2

)
= −cp′4πR2 ∂p

∂ψ
− I

∂I

∂ψ
, (10)

where I is the current function which appears in Eq. (3). To the Grad-Shafranov equation

we have added the artificial coefficient cp′ which can be adjusted to measure the effect of
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plasma pressure gradient on the equilibrium without changing the plasma temperature or

density gradient (inconsistent at fixed beta). This is explained in more detail in the next

sections. The local equilibrium method [22, 23] as described in Ref. [20] and employed

here, ensures that for any choice of local equilibrium parameters (such as safety factor q,

plasma elongation κ, aspect ratio R/a, and so on) the gyrokinetic equations see a true

Grad-Shafranov equilibrium.

D. The electromagnetic gyrokinetic equation

The linear gyrokinetic equation [1–3] may be written as

∂ha
∂t

+
(
v‖b + vd

) · ∇Ha +
c

B
b×∇Ψa · ∇f0a = Ca(Ha) . (11)

where f0a is the equilibrium distribution which must be a local Maxwellian

f0a =
na

(2πTa/ma)3/2
exp

(
−mav

2

2Ta

)
= nafMa . (12)

The function Ha is the nonadiabatic distribution

Ha(R) =
zaefa0
Ta

Ψa(R) + ha(R) , (13)

such that the field potential Ψa includes contributions from the electrostatic fluctuations

and both transverse and compressional magnetic fluctuations [3]

Ψa(R) = G0a

[
δφ(R)− v‖

c
δA‖(R)

]
+

v2
⊥

Ωcac
G1aδB‖(R) , (14)

where Ωca
.
= zaeB/(mac) is the cyclotron frequency. In Eq. (14), the linear operators G0a

and G1a arise from gyro-averaging. If we write the fields in spectral form as

z(R) =
∑

k⊥

eiS(R)z̄(k⊥) , (15)

then these operators have the following spectral representations

G0a z(R) =
∑

k⊥

eiS(R)J0(k⊥ρa)z̄(k⊥) , (16)

G1a z(R) =
∑

k⊥

eiS(R)J0(k⊥ρa) + J2(k⊥ρa)
2

z̄(k⊥) , (17)

where k⊥ = −i∇⊥, and the Larmor radius is ρa
.
= vta/Ωca with vta

.
=

√
Ta/ma.
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The drift velocity in Eq. (11) is written as

vd =
v2
‖ + v2

⊥/2

ΩcaB
b×∇B + cp′

4πv2
‖

ΩcaB2
b×∇p . (18)

Once again we have introduced the artificial parameter cp′ to measure the geometric pressure

gradient effect without having to change the background profile gradients. The effect of the

pressure gradient, dp/dr, on the drift velocity is complicated in the case of general flux-

surface shape. The explicit dependence is described in detail in Ref. [20]. It is important to

note that it is the pressure gradient, not the pressure, that enters the gyrokinetic equation.

On the other hand, the pressure itself enters the Maxwell equations when they are written

in dimensionless form.

E. The gyrokinetic Maxwell equations

The corresponding gyrokinetic Maxwell equations [3] are given by

− 1

4π
∇2
⊥δφ+

∑
a

z2
ae

2

Ta

∫
d3v f0aδφ =

∑
a

zae

∫
d3v G0aHa , (19)

− 1

4π
∇2
⊥δA‖ =

∑
a

zae

∫
d3v

v‖
c
G0aHa , (20)

− 1

4π
δB‖ =

∑
a

zae

∫
d3v

v2
⊥

Ωcac
G1aHa . (21)

To elucidate the beta-dependence of these equations, we introduce the dimensionless quan-

tities

δφ̂ =
eδφ

Te
, δÂ‖ =

cs
c

eδA‖
Te

, δB̂‖ =
δB‖
Bunit

, and Ĥa =
Ha

nefMa

, (22)

where cs
.
=

√
Te/mi is the ion sound speed. Some algebra shows that the equations for the

dimensionless fields take the form

−λ2
D∇2

⊥δφ̂+
∑
a

z2
a

naTe
neTa

∫
d3v fMa δφ̂ =

∑
a

za

∫
d3vfMaG0aĤa , (23)

−2ρ2
s,unit

βe,unit

∇2
⊥δÂ‖ =

∑
a

za

∫
d3v fMa

v‖
cs
G0aĤa , (24)

− 1

βe,unit

Bunit

B
δB̂‖ =

∑
a

∫
d3v fMa

mav
2
⊥

2Te
G1aĤa . (25)
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where λD = [Te/(4πnee
2)]

1/2
is the Debye length, and we have introduced the effective

electron beta and effective ion-sound gyroradius:

βe,unit
.
=

8πneTe
B2

unit

and ρs,unit
.
=

cs
eBunit/mic

. (26)

In what follows, we will write the effective ion-sound gyroradius as ρs instead of ρs,unit for

brevity. Note that ρs, unlike ρa, is constant on a flux surface.

F. Expansion in toroidal eigenmodes

To proceed, we expand fluctuating quantities in Fourier series, for example

Ψa =
∑
n

e−inαΨa,n . (27)

We remark that because of the symmetry properties of the equations, it is natural to la-

bel toroidal eigenmodes with kθρs rather than n, where kθ
.
= nq/r. For a single toroidal

harmonic, the gyrokinetic equation is written symbolically as

∂ha,n
∂t

− i(ωθ + ωd + ωC)Ha,n − iω∗

(
zaef0a

Ta
Ψa,n

)
= 0 (28)

where ωθ, ωd and ωC are differential operators:

−iωθ = v‖(b · ∇θ) ∂
∂θ

, (29)

−iωd = −in(vd · ∇α) + (vd · ∇r) ∂
∂r

, (30)

−iωC = −iνa
2

∂

∂ξ

(
1− ξ2

) ∂

∂ξ
, (31)

−iω∗ = i
vta
a
kθρa

[
a

Lna
+

(
v2

2v2
ta

− 3

2

)
a

LTa

]
. (32)

In Ref. [20] a detailed recipe for evaluation of b · ∇θ, vd · ∇α and vd · ∇r for general or

model flux-surface shape is given. Note that cp′ allows us to change the pressure gradient

in ωd and the Grad-Shafranov equation without changing ω∗. While this essentially makes

the pressure gradient and the species gradients inconsistent, for a fixed beta, when cp′ 6= 1,

it allows us to isolate the geometric pressure gradient effect without affecting the relative

magnitude of the electric and magnetic fluctutations (controlled by the explicit beta in the

Maxwell equations) and the diamagnetic drifts. In Eq. (31) we have, for simplicity, retained
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only the pitch-angle scattering contribution to the collision operator. In unpublished work

we have verified that momentum-conserving corrections to this operator, which are in fact

complicated to implement due to the energy coupling they introduce, are small (on the order

of a percent or less for parameters typical of DIII-D). This is very different than the case

for neoclassical transport, for which momentum conservation is required to maintain the

ambipolarity of particle fluxes.

G. The Maxwell dispersion matrix

This section describes the formulation of the Maxwell dispersion matrix, which forms

the basis for the new GYRO eigensolver. As outlined below, we ultimately consider the

Laplace transform of the gyrokinetic-Maxwell equations, write the distribution function in

terms of the fields using the gyrokinetic equation, and insert this into the Maxwell equations

to form a matrix equation for the field vector (δΦ, δA‖, δB‖) in terms of the frequency. In

the eigensolver, the eigenfrequencies are computed by solving for the zeros of the Maxwell

dispersion matrix.

The Laplace transform [24] of a function f(t), which we assume to be differentiable on

(0,∞), is

f̃(s)
.
= Lf =

∫ ∞

0

f(t)e−stdt (33)

whenever the integral exists for at least one value of s. In the present case, the integral will

converge for s > s0, where s0 is the maximum linear growth rate. The inversion formula is

given by the Bromwich integral

f(t)
.
= L−1f̃ =

1

2πi

∫ c+i∞

c−i∞
f̃(s)estds , 0 < t <∞ . (34)

It will be convenient to use the variable ω = is in subsequent formulae. Now, from Eq. (28),

solving for the distribution function in terms of the fields, it is then easy to show that

H̃a(ω) = LHa,n =
1

ω + ωθ + ωd + ωC
iha(0) +

ω − ω∗
ω + ωθ + ωd + ωC

(
zaef0a

Ta
Ψ̃a

)
, (35)

where Ψ̃a = LΨa,n. Upon substitution of H̃a(ω) into the Laplace transform of the Maxwell

equations, Eqs.(19)-(21), we are left with a system of equations for the fields of the form

Mσσ′(ω)Φσ′(ω) = Sσ(ω) (36)
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where σ and σ′ are field indices which run from 1 to 3. The field matrix and source are given

by

Mσσ′(ω) = δσσ′L
σ −

∑
a

z2
ae

2

Ta

∫
d3v f0aG

σa ω − ω∗
ω + ωθ + ωd + ωC

Gσ′a , (37)

Sσ(ω) =
∑
a

zae

∫
d3v Gσa 1

ω + ωθ + ωd + ωC
iha(0) . (38)

We have defined the additional 3-index vectors:

(
Φ1,Φ2,Φ3

) .
=

(
δ̃φ, δ̃A‖, δ̃B‖

)
, (39)

(
L1, L2, L3

) .
=

(
− 1

4π
∇2
⊥ +

∑
a

z2
ae

2

Ta

∫
d3v f0a,

1

4π
∇2
⊥, −

1

4π

)
, (40)

(
G1a, G2a, G3a

)
=

(
G0a, −

v‖
c
G0a,

v2
⊥

Ωcac
G1a

)
. (41)

In what follows, we will refer to M(ω) as the Maxwell dispersion matrix. The roots of

the equation detM(ω) = 0 correspond to the normal modes of the system. When the

velocity integrals are taken along the real velocity axes, the integrals used to compute M
define a function of s analytic in region s > 0, which corresponds to the upper-half ω-

plane. This means that unstable modes can be readily computed using the same (real)

velocity discretization as in the initial-value problem. Calculation of stable normal modes,

on the other hand, would require analytic continuation of M(ω) into the lower half-plane,

Im(s) ≤ 0, by deformation of the contour in velocity space, or perhaps by numerical analytic

continuation.

The numerical implementation of the eigenvalue solver, which employs the existing GYRO

spatial discretization methods, is described in detail in the Appendix. Here, we remark that

the size of the final matrix problem is small, with rank(M) = nσnrnb, with nσ the number

of fields, nr the number of radial gridpoints, and nb the number of poloidal finite elements.

For a basic electrostatic case, this can be as small as rank(M) = 24. The dominant cost is

therefore not computing detM(ω), but rather computing the inverse P−1, where P is the

matrix representation of the propagator P = ω + ωθ + ωd + ωC .

10



III. NUMERICAL RESULTS

A. Numerical convergence

In what follows, we present benchmarks based on a finite-beta version of the Cyclone base

case as well as studies of a representative NSTX-like plasma. In Table I, we summarize the

simulation resolution parameters used in these studies, compared with the standard GYRO

resolution. Because the eigenvalue solver reuses the existing GYRO discretization methods,

we have good intuition regarding the baseline grid resolution requirements. For the Cyclone

case, slightly higher radial resolution was needed due to the longer fieldline extension of

the modes. For the NSTX-like case, significantly higher resolution along the field line was

required to both eliminate unphysical spurious numerical modes which were observed at the

standard GYRO resolution and to adequately resolve the complex structure of the physical

modes.

B. Electromagnetic version of the Cyclone base case

Before carrying out parameter scans for an NSTX-like operating point, we first examine

a familiar test case (the Cyclone base case [25]) consisting of a single deuterium ion species

and gyrokinetic electrons: r/a = 0.5, R0/a = 2.7775, q = 1.4, s = 0.786, Ti/Te = 1,

a/Lni = a/Lne = 0.8, a/LT i = a/LTe = 2.48 and
√
mi/me = 60. We use the s-α geometry

model with αp = 0 (i.e. cp′ = 0) and neglect collisions.

1. Low-kθ instabilities

We begin by verifying the implementation of compressional electromagnetic perturbations

in GYRO through comparisons with the GS2 code [11, 12]. Figure 1 shows the variation of

the GYRO and GS2 eigenfrequencies over an extended range of beta at a single wavenum-

ber, kθρs = 0.25. At low beta, an ion-temperature-gradient (ITG) mode dominates and is

stabilized as beta increases. Just below the threshold for the kinetic ballooning instability,

βcrit
e,unit ∼ 1.3%, a trapped-electron mode (TEM) dominates. The TEM is shown to have

essentially no dependence on beta. Finally, for βe,unit > βcrit
e,unit, the kinetic ballooning-mode

(KBM) dominates and is further destabilized as beta increases. In tokamak and spheri-
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Fig. 1.  Cyclone base case scan comparing GYRO 
(solid red) against GS2 (dashed green) results including 
both δA|| and δB||. The linear growth rate, γ, and real 
frequency, ωr, are compared as functions of the 
electron βe,unit. Also shown are GYRO results (solid 
blue) for δA|| only. 



cal torus plasmas, second stability can occur at high beta, depending on the value of the

plasma pressure gradient, though these effects are neglected in this test case (since cp′ = 0).

The overall effect of δB‖ is small in this test case, except at high beta, where it is strongly

destabilizing to the KBM. GYRO and GS2 have been previously benchmarked for linear

and nonlinear electrostatic cases and for linear electromagnetic cases including only δA‖.

Figure 1 shows good intercode agreement can also be achieved at finite δB‖, although we

emphasize that relatively high radial and energy-grid resolution in both codes was required

to achieve close agreement. We note that the slight deviation in the growth rate of the

KBM near βcrit
e,unit occurs even for linear electromagnetic cases including only δA‖. In this re-

gion, accurate resolution of the ion drift resonance becomes important. An apparent similar

deviation was also observed in a benchmark between GS2 and the GENE code, for which,

similar to the GYRO results, a slightly larger KBM growth rate is predicted near threshold

[26].

2. Transition to high-kθ instabilities

In Figs. 2 and 3, we explore the transition from low-kθ ITG/TEM/KBM modes to a high-

kθ ETG mode at fixed beta. It is found that either an ITG mode (at low beta) or a KBM

(at high beta) dominates the TEM for kθρs < 0.5 and all three modes are suppressed as kθρs

increases beyond 0.5. As kθρs increases, the TEM transforms smoothly into an ETG mode

with a growth-rate that increases until about kθρs = 20. Comparing the two figures, we

find that the hybrid TEM/ETG mode has a negligible dependence on beta across the entire

wavenumber range. It has previously been reported that such a hybrid mode can break up

at low a/LTe, forming distinct TEM and ETG branches [6]. This possibility was explored

here by decreasing the electron temperature gradient while holding the ion temperature

gradient fixed (still with cp′ = 0). The results show that both the TEM and ETG growth

rates decrease with decreasing a/LTe, and that both modes become stable before they break-

apart into distinct modes. We also note that, as expected, the ITG mode is not significantly

affected by the changing electron temperature gradient. In contrast, the high-beta KBM is

destabilized by increasing a/LTe, particularly at low kθ. This is due to the fact that the

KBM is driven primarily by the normalized pressure gradient (see the MHD-α parameter

in Eq. (6)) and, increasing a/LT at fixed a/Ln increases dp/dr and thus αp [27]. This is
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Fig. 2.  Linear growth rate, γ, and real frequency, ωr, 
versus kθρs for the Cyclone base case at relatively low 
βe,unit = 0.5%) including δB||. Three values of the 
electron temperature gradient are shown: a/LTe = 1.75 
(green curves), a/LTe = 2.0 (blue curves) and a/LTe = 
2.48 (red curves). The hybrid TEM/ETG mode remains 
continuous (does not split into two separate modes) 
even at low a/LTe.  

 
 

 
Fig. 3.  Same as Fig. 2, except for somewhat higher 
beta (βe,unit = 1.5%). Once again, the hybrid TEM/ETG 
mode remains continuous even at low a/LTe. 



analogous to Fig. 1, where αp is increased by increasing beta.

C. Parameter scans for the high-beta NSTX-like case

We now examine the gyrokinetic linear stability with full electromagnetic physics for

parameters more relevant to spherical tokamaks, including the effects of non-circular flux-

surface shape and, more importantly, plasma pressure gradient. We use a model high-

beta plasma based on NSTX shot #132641 at t=0.70s, which was run to explore improved

confinement with strong lithium evaporation. Our model parameters are roughly based on

plasma conditions at r/a=0.7. This location was chosen since there are no unstable drift-

wave instabilities inside r/a < 0.6 due to the low shear (|ŝ| < 0.1 for r/a < 0.55). Still, this

point is far enough from the edge where the experimental measurements may be subject

to large uncertainties and the small ρ/a gyrokinetic ordering assumed in the simulation

equations may fail due to steep gradients in the pedestal. For simplicity, we set the ion

temperature equal to the electron temperature, and we neglect the carbon impurity species,

unless specified, and thus set the ion density equal to the electron density according to quasi-

neutrality. Collisions are also neglected, unless otherwise specified. Finally, we arrive at a

model NSTX-like case: r/a = 0.7, R0/a = 1.65, q = 3, s = 0.88, Te = TD, a/LnD = a/Lne =

1, a/LTD = a/LTe = 1 and βe,unit = 1.7%. The geometric quantities are computed using

the Miller local equilibrium model [20, 23] with the following shape parameters: ∂R0/∂r =

−0.375, κ = 2.4, sκ
.
= (r/κ)∂κ/∂r = −0.12, δ = 0.31 and sδ

.
= r∂δ/∂r = 0.23. For this case,

the consistent value of the MHD alpha parameter is αp,unit = 1.0098. Up-down symmetric

flux surfaces are assumed for simplicity.

Figure 4 shows the kθ spectrum of unstable modes for this case. Here we find surprisingly

that only the low-kθ modes are unstable; that is, no unstable modes were found beyond the

range of the figure, and even the unstable modes are weakly growing. The real frequency

spectrum suggests that the dominant mode seen is actually a hybrid of two ITG/KBM-like

modes, which we will explore further in the sections that follow. The driving mechanisms

behind the overall strong stabilization seen in Fig. 4 will also be explored in detail, focusing

on the shaping effects and on the beta and plasma pressure gradient effects. For example, it is

well-known that increased plasma pressure gradient can lead to a so-called Shafranov shift

stabilization of drift-wave-driven instabilities by effectively increasing the good-curvature
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Fig. 4.  Linear growth rate, γ, and real frequency, ωr, 
versus kθρs for NSTX-like parameters. GYRO 
simulations for the baseline case (red), which includes 
δB|| and shaped geometry, are compared with those 
which include only δA|| and are further modified by 
neglecting the pressure gradient in the ∇B drift, such 
that the curvature drift is equal to ∇B drift (blue). For 
the standard δA|| only case, the plasma is stable for all 
kθρs. Also, shown is a comparison of the baseline 
results with those in the circular geometry limit 
(green). For all three curves, no unstable modes are 
found at values of kθρs beyond the range of this plot. 



region of the plasma. To explore this further, below we look at scans over cp′ and βe,unit at

low, intermediate, and high kθρs to identify the type of modes, and specifically highlight the

effect of the compressional magnetic perturbations via comparisons with electromagnetic

results which retain δA‖ but neglect δB‖.

We remark that when δB‖ is neglected, the plasma is stable across the entire wavenumber

range for the NSTX-like case. However, MHD theory predicts that, in the kθ → 0 limit,

there is a partial cancellation between the potentially-stabilizing component of the ∇B drift

proportional to the pressure gradient and the compressional magnetic field terms. Thus,

neglecting δB‖ can overestimate the stabilizing influence of the pressure-induced diamag-

netic well. In previous numerical studies of low-kθ ITG modes at finite-β it was observed

that electromagnetic simulations which do not include δB‖ – but which selectively zero the

pressure gradient effect in the ∇B drift – can recover some of the destabilizing effects of δB‖

[22]. Indeed, this approximation has been used in past GYRO simulations of electromag-

netic turbulence [28]. Figure 4 shows that, for this case, unlike the standard δA‖ only case,

this modification does result in an unstable low-kθ mode, although it is clear from the de-

viation from the baseline curve that not all of the dynamical effects of δB‖ can be captured

by this approximation. This agrees qualitatively with recent GS2 results for simple s-α

plasmas [29]. Furthermore, we note that, for some high-beta DIII-D plasmas, we find this

approximation to be more inaccurate than the standard δA‖ only case for the entire range

of kθρs. Systematic studies, either analytical or numerical, of the conditions under which

this approximation is meaningful and accurate for arbitrary kθ have not been reported. We

consider such a study to be beyond the scope of this paper and do not discuss it further.

Regardless, for high-beta plasmas, it is clear that inclusion of δB‖ in microstability analysis

is required to ensure electromagnetic effects are properly described in general.

1. Shaping effects

Figure 4 compares the eigenvalue spectrum with full shaping effects against the analogous

spectrum in a circular plasma (κ = 1, δ = sκ = sδ = 0). In the latter case, only a single

smooth mode exists at low kθ, and this appears to be a continuation of the lower-kθ shaped-

plasma mode, and its growth rate is larger for kθρs > 0.25, suggesting that the shaping effects

are generally stabilizing. The main shaping effects in this case appear to be the elongation,
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which is known to be stabilizing, and the Shafranov shift, ∂R0/∂r, which is exerting a

significant destabilizing effect. In fact, we found that if we eliminate the Shafranov shift in

the circular case, the plasma becomes completely stable. In the end, the salient result is that

the intermediate and high kθ modes are stable and thus the shaping effects are evidently

not the dominant mechanism for their stabilization.

2. Long-wavelength hybrid ITG/KBM modes

Figure 5 explores the effect of the plasma pressure gradient on low-kθ modes, at

kθρs = 0.25. In this figure, significant differences are seen when δB‖ is neglected; specifically,

the growth rate is largely underestimated. The overall destabilizing effect of δB‖ in Fig. 5

is consistent with previous studies which showed that neglecting δB‖ can lead to a large un-

derestimation of the ITG growth rate [13]. This is a result of the fact that δB‖ fluctuations

ultimately counteract the stabilizing effect of the plasma diamagnetism. For both curves

in Fig. 5, the mode is stabilized as the geometric pressure gradient scaling factor increases,

although for the case of only transverse electromagnetic perturbations the mode is com-

pletely stabilized well below the baseline value. We have also found that purely electrostatic

simulations follow a similar trend as the simulations containing only δA‖ (although we do

not show these results here) highlighting the strong effect of δB‖ for this case.

While the real frequency spectrum indicates that these modes are ITG or KBM-like, as

they are in the ion diamagnetic direction, further analysis is needed to specifically categorize

them in detail. To this end, Fig. 6 shows a scan over βe,unit at various values of cp′ . Here

we find that, when the geometric pressure-gradient effects are zeroed (cp′ = 0), the (blue)

curve looks similar to that for the Cyclone base case in Fig. 1 in that we find a dominant

ITG mode at low beta and a dominant KBM at high beta. The latter mode is dominant at

the baseline values cp′ = 1 and βe,unit = 1.7%. However, unlike the Cyclone case, the ITG

mode has a weak, yet destabilizing, dependence on beta. Figure 6 further shows that, as cp′

increases, (1) the growth rate of the KBM strongly decreases, (2) the growth rate of the ITG

mode weakly increases, and (3) two distinct modes merge into a hybrid ITG/KBM mode.

At high cp′ , this hybrid mode is further stabilized as cp′ increases. Figure 7 further confirms

this picture by showing the structure of the eigenmodes at the baseline beta, βe,unit = 1.7%.

Here, we clearly see that the dominant mode at cp′=0 has the KBM symmetry in δA‖ (out-

15



 
Fig. 5.  Linear growth rate, γ, and real frequency, ωr, versus the 
geometric pressure gradient scaling factor, cp´. NSTX-like parameters 
at kθρs = 0.25 are assumed. GYRO simulations including only δA|| are 
compared with those including both δA|| and δB||. The unstable mode 
at the baseline value cp´ = 1 (note that αp,unit = 1.0098 cp´) is seen only 
with full electromagnetic perturbations (red curve). 

 
Fig. 6.  Linear growth rate, γ, and real frequency, ωr, versus electron 
beta, βe,unit, for selected values of the geometric pressure gradient 
scaling factor, cp´ (αp,unit = 1.0098 cp´). NSTX-like parameters at kθρs = 
0.25 are assumed. These simulations include δB||. Hybrid ITG/KBM 
modes are seen for cp´ ≥ 0.2. 



 

 
Fig. 7.  Normalized field eigenfunctions plotted as a function of the ballooning angle θp relative to the value of the 
real part of the normalized electrostatic potential at θp=0 for the dominant mode for NSTX-like parameters at kθρs = 
0.25 including δB||. The following values of the geometric pressure gradient scaling factor are considered: cp´ = 0 
(a-c) (KBM), cp´ = 0.4 (d-f) (hybrid ITG/KBM), cp´ = 1 (g-i) (hybrid ITG/KBM). The solid (dashed) lines are the real 
(imaginary) components. Note that αp,unit = 1.0098 cp´. 



of-phase-symmetry of the real and imaginary components). As cp′ increases and the hybrid

mode forms, the KBM symmetry is retained. Though not shown here, we have confirmed

the hybrid mode smoothly transforms from KBM to ITG symmetry as βe,unit decreases, with

the imaginary component of δA‖ becoming smaller until it reverses to become in-phase with

the real component. Figure 7 also shows that δB‖ increases with cp′ , although it is still

much smaller than δA‖. Nevertheless, Fig. 5 shows that the compressional component still

significantly influences the growth rate.

A similar picture emerges when δB‖ is neglected, as shown in Fig. 8. In this case we

find that the mode seen in the δA‖-only case of Fig. 5 (blue curve) is actually from the ITG

branch, rather than from the KBM branch as for the full electromagnetic case. Figure 8

further shows that this mode has essentially no dependence on the electron beta. However,

for the hybrid ITG/KBM, similar to the case with δB‖ effects, the mode is stabilized with

increasing cp′ and is completely stabilized by cp′ ∼ 0.65, in accordance with Fig. 5.

3. Intermediate-wavelength hybrid ITG/KBM modes

Having identified the mode in Fig. 4 as a hybrid ITG/KBM mode, we note that there

appears to be a significant transition in the mode near kθρs = 0.55. Thus, we now perform

our analysis at an intermediate wavenumber of kθρs = 0.6 for comparison with the kθρs=0.25

regime. The results for the cp′-scan are shown in Fig. 9. Two distinct modes appear for both

the reduced electromagnetic (δB‖ neglected) and fully electromagnetic cases. The leftmost

ITG mode is eventually completely stabilized as cp′ increases. Then a secondary mode

appears which remains unstable at the baseline value only when full electromagnetic effects

are retained, similar to the low-kθ case in Fig. 5. The real frequency spectrum indicates that

the second mode appears to be from the same family as the reduced electromagnetic modes.

For further analysis, Fig. 10 shows a scan over βe,unit at various values of cp′ , analogous to

Fig. 6. For the first mode in Fig. 9, we again find distinct ITG/KBM branches (cp′=0 and

cp′=0.15 curves in Fig. 10), with the dominant mode at the baseline beta being the KBM

branch. For the secondary mode, two distinct branches are initially seen (cp′ = 0.4), but

then a hybrid ITG/KBM mode forms (cp′ = 0.6) which is further stabilized with increasing

cp′ (cp′ = 1). In summary, for this case, the eigenmode plots in Fig. 11 show the KBM

symmetry for the dominant mode at cp′ = 0 and the ITG symmetry for cp′ = 0.4 and the
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Fig. 8.  Linear growth rate, γ, and real frequency, ωr, versus the electron beta, βe,unit, 
for selected values of the geometric pressure gradient scaling factor, cp´. NSTX-like 
parameters at kθρs = 0.25 are assumed. These simulations include only δA||. In 
comparison with the fully electromagnetic case in figure 6, hybrid ITG/KBM modes 
are still seen at finite cp´, but the unstable mode at the baseline beta has ITG rather 
than KBM symmtery. Note that αp,unit = 1.0098 cp´. 

 
Fig. 9.  Linear growth rate, γ, and real frequency, ωr, versus the geometric pressure 
gradient scaling factor, cp´. NSTX-like parameters at kθρs = 0.6 are assumed. GYRO 
simulations including only δA|| are compared with those including both δA|| and δB||. 
The unstable mode at the baseline value cp´ = 1 is seen only with full 
electromagnetic perturbations (red curve). Note that αp,unit = 1.0098 cp´. 



 
Fig. 10.  Linear growth rate, γ, and real frequency, ωr, versus the electron beta, βe,unit for selected values of the 
geometric pressure gradient scaling factor, cp´. NSTX-like parameters at kθρs = 0.6 are assumed. These simulations 
include δB||. Hybrid ITG/KBM modes are seen at cp´ = 0.6 and 1.0. Note that αp,unit = 1.0098 cp´.  

 
Fig. 11.  Normalized field eigenfunctions plotted as a function of the ballooning angle θp relative to the value of the 
real part of the normalized electrostatic potential at θp=0 for the dominant mode for NSTX-like parameters at kθρs = 
0.6 including δB||. The following values of the geometric pressure gradient scaling factor are considered: cp´ = 0 (a-c) 
(KBM), cp´ = 0.4 (d-f) (ITG-like), cp´ = 1 (g-i) (hybrid ITG/KBM). The solid (dashed) lines are the real (imaginary) 
components. Note that αp,unit = 1.0098 cp´. 



hybrid mode at cp′ = 1. Unlike the low-kθ case, here we find that, at the baseline levels

(βe,unit = 1.7%, cp′ = 1) δB‖ is as large as δA‖.

Overall, relating the low- and intermediate-kθ figures back to Fig. 4, we see that the red

curve corresponds to a merger of two hybrid ITG/KBM modes, starting with KBM-like

symmetry at low kθ and transitioning to ITG-like symmetry beyond kθρs = 0.5.

4. Cascading Alfvénic drift modes

The most surprising result of Fig. 4 is the complete stabilization of modes in the high-kθ

ETG regime. This observation suggests that we analyze in detail the effects of the pressure

gradient and beta at kθρs = 15. Figure 12 shows a scan over cp′ analogous to Figs. 5 and 9.

Here we find a interesting cascade of modes as cp′ increases, as represented by the four peaks

for the reduced electromagnetic case and the first three peaks for the fully electromagnetic

case. The difference between the full and reduced electromagnetic cases for these cascading

modes is less significant compared with the low-kθ case. Furthermore, although not shown

here, the cascade of modes for the electrostatic case (including only δφ) is nearly identical to

the reduced electromagnetic case and thus these modes are not strongly influenced by the

Ampère equation dynamics.

The scan over βe,unit in Fig. 13 for selected values of cp′ gives us further insight. These

modes appear to be Alfvénic drift modes, because the real frequency is on the order of the

Alfvén frequency (dashed curve in Fig. 13). The cases cp′ = 0, 0.2 and 0.4 correspond to

the first (leftmost) mode in Fig. 12. Unlike the low and intermediate kθ cases, the dominant

mode at cp′ = 0 is not a KBM mode, but rather a mode in the electron direction with a very

weak beta dependence, similar to the TEM seen for the Cyclone base case scan in Fig. 1.

The second mode in Fig. 12, represented by the cp′ = 0.6 curve in Fig. 10, has two distinct

very-low-frequency branches similar to the ITG/KBM branches seen at low cp′ for the low

kθ case. For the third mode, represented by the cp′ = 0.65 curve, only a single mode appears

over this range. The eigenfunctions for these modes (see Fig. 14) shows that these cascades

are actually different excited states along the fieldline. Specifically, the first mode is the

ground state, the second mode is the first excited state, etc. In all cases, δB‖ is significantly

larger than δA‖, in contrast with the lower-kθ cases. Note also that with the structure of

the eigenmodes becoming increasingly more complex during the cascade, very high spatial
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Fig. 12.  Linear growth rate, γ, and real frequency, ωr, versus the geometric pressure gradient scaling 
factor, cp´. NSTX-like parameters at kθρs = 15 are assumed. GYRO simulations including only δA|| 
are compared with those including both δA|| and δB||. The δA||-only modes (blue curves) and the first 
three fully electromagnetic modes (red curves) represent a cascade of Alfvénic modes from the 
ground state to excited states. A new compressional electron drift mode is seen near cp´ ~ 0.75. 
However, no unstable modes survive at the baseline level, cp´ = 1, such that αp,unit = 1.0098 cp´. 

 
Fig. 13.  Linear growth rate, γ, and real frequency, ωr, versus the electron beta, βe,unit, for the 
cascading Alfvénic drift modes of Fig. 12 for selected values of the geometric pressure gradient 
scaling factor, cp´. NSTX-like parameters at kθρs = 15 are assumed. These simulations include δB||. 
cp´ = 0.0, 0.2, and 0.4 correspond to the ground state, cp´ = 0.6 corresponds to the first excited state, 
and cp´ = 0.65 corresponds to the second excited state. The dashed line represents the Alfvén 
frequency. Note that αp,unit = 1.0098 cp´. 



 

 

 
Fig. 14.  Normalized Alfvénic drift eigenfunctions plotted as a function of the ballooning angle θp relative to the 
value of the real part of the normalized electrostatic potential at θp=0 for the dominant mode for NSTX-like 
parameters at kθρs=15 including δB||. The following values of the geometric pressure gradient scaling factor are 
considered: cp´ = 0 (a-c) (ground state), cp´ = 0.6 (d-f) (first excited state), cp´ = 0.65 (g-i) (second excited state). The 
solid (dashed) lines are the real (imaginary) components. Note that αp,unit = 1.0098 cp´. 



resolution along the field lines is needed to adequately resolve them. In fact, we found that

spurious computational modes can form at low resolution.

5. Compressional electron drift waves

The fourth, high-kθ mode in Fig. 12, which appears at large cp′ when δB‖ effects are

included, does not appear to be part of the initial cascade and, in fact, Fig. 15 shows that it

is part of a set of compressional electron drift waves. This is the first time such compressional

modes have been observed. For these modes, the real frequency is somewhat shifted from

the Alfvén frequency and, unlike the KBM/ITG/Alfvénic drift modes, these are destabilized

by simultaneous strong beta and pressure gradient. Thus, at the baseline pressure gradient,

the mode is unstable only at very high beta, specifically at nearly two times the baseline

value. Plots of the eigenmodes in Fig. 16 shows that these modes are in the ground state, but

with very large compressional magnetic components. Although the structure is apparently

simpler than for the excited-state modes, we still find that high resolution along the field

lines is necessary, as otherwise the modes are essentially missed.

Overall, relating these plots back to the baseline curve in Fig. 4, at high kθ, while the large

plasma pressure gradient has stabilized the Alfvénic cascade, beta is too weak to destabilize

the compressional electron drift modes, so ultimately the high kθ-regime is stable.

6. ETG modes

In addition to the high plasma pressure gradient, these NSTX-like cases are generally

difficult to simulate accurately because they reside near marginal stability. To illustrate

this, Fig. 17 shows a scan over the temperature gradient scale length (equal for electrons and

ions). Because we are interested in the destabilizing effects of the temperature gradient here,

we take cp′ = 0 for this analysis, since increasing the temperature gradient also increases the

strongly stabilizing effect of the geometric pressure gradient. Figure 17 shows most notably

that the critical gradient for the high-kθ ETG mode occurs well above the baseline level.

Consistent with Fig. 12, an unstable mode does persist at the baseline level (the ground-

state Alfvénic drift mode), though it is weakly growing and uncoupled from the main ETG

mode. For the low-kθ case, the KBM dominates until very low a/LT , where the TEM
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Fig. 15.  Linear growth rate, γ, and real frequency, ωr, versus the electron beta, βe,unit, for compressional electron drift 
waves (δB|| is necessary for the existence of these modes). NSTX-like parameters at kθρs = 15 are assumed. The 
dashed line represents the Alfvén frequency. Note that αp,unit = 1.0098 cp´. 

 
Fig. 16.  Normalized compressional electron drift wave eigenfunctions plotted as a function of the ballooning angle 
θp relative to the value of the real part of the normalized electrostatic potential at θp=0 for the dominant mode for 
NSTX-like parameters at kθρs = 15.0 including δB||. The following values of the geometric pressure gradient scaling 
factor and beta scaling factor are considered: cp´ = 0.75, βe,unit = 1.7% (a-c); cp´ = 0.85, βe,unit = 2.55% (d-f); cp´ = 1, 
βe,unit = 3.4% (g-i). The solid (dashed) lines are the real (imaginary) components. Note that αp,unit = 1.0098 cp´. 



 

 

 
Fig. 17.  Linear growth rate, γ, and real frequency, ωr, 
versus temperature gradient length scale (a/LTi=a/LTe). 
NSTX-like parameters with geometric pressure 
gradient scaling factor cp´ = 0 (αp,unit = 0) are assumed. 
These simulations include δB||. The dotted line 
corresponds to the baseline value. Note that the critical 
gradient for the high-kθ ETG mode occurs well above 
the baseline value. 



emerges. Performing a scan over kθ as in Fig. 4 (but at a/LT = 3 rather than a/LT = 1),

Fig. 18 shows that the larger temperature-gradient drive is enough to destabilize the drift-

mode instabilities over the entire regime, though just barely, with a weakly destabilized

zone forming in the region at intermediate kθρs, and the overall spectrum appearing as a

smoothly-transitioning ITG/ETG hybrid mode, similar to the hybrid TEM/ETG mode in

Figs. 2 and 3. For reference, the red curve (cp′ = 0 at the baseline value of a/LT ) confirms

that reducing the pressure gradient alone is not enough to drive the intermediate-kθ modes

unstable. However, once a/LT is large enough to strongly drive the ETG mode, decreasing

cp′ further destabilizes the mode (as shown by the green curve).

7. Addition of carbon impurity and electron collision effects

Although the focus of the present work is understanding compressional electromagnetic

effects rather than direct experimental comparison, we give for reference some more com-

prehensive simulation results. Figure 19 shows the effect of including the (large) carbon

impurity fraction measured in the experiment. For these simulations, the deuterium ion

parameters are modified from the pure plasma values due to quasi-neutrality and thus we

have: ni/ne = 0.5, nc/ne = 1/12, a/Lni = 2.5, a/Lnc = −0.25, Tc = Ti, a/LTc = a/LTi.

The electron parameters are the same as before. Due to the significant impurity fraction

in this discharge, their impact is non-negligible. However, we note that the magnitude of

the growth rate for the low-kθ mode is on the same order as the pure plasma case and the

qualitative variation of the curve is retained, including, most significantly, the absence of

unstable high kθ modes. Thus, we expect our general conclusions for the pure plasma case

to be relevant, though of course inclusion of the impurity dynamics is surely necessary for

validation work.

In addition, due to the low temperature, electron collisions are significant. In Fig. 19 we

also show the kθ spectrum for the deuterium+carbon case, including electron collisions. The

overall effect is, as expected, stabilizing for the hybrid ITG/KBM modes across the entire

range. We note that, even with collisions, we do not observe any micro-tearing instabilities

(dominant or sub-dominant) for this case.
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Fig. 18.  Linear growth rate, γ, and real frequency, ωr, versus 
kθρs for NSTX-like parameters. GYRO simulations for the 
baseline temperature gradient length scale, a/LT = 1, and geo-
metric pressure gradient scaling factor cp´ = 0 (αp,unit = 0) are 
compared with those for a/LT = 3. These simulations include 
δB||. Compare with Fig. 4 with the baseline values a/LT = 1 and 
cp´ = 1, for which no unstable ETG modes were found. 

 

 

 
Fig. 19.  Linear growth rate, γ, and real frequency, ωr, versus 
kθρs for NSTX-like parameters including δB||. GYRO simula-
tions for the baseline (collisionless, pure-plasma) case (red 
curve) are compared with those for the baseline plus carbon 
impurities (blue curve), and the baseline plus carbon 
impurities and electron collisions (green curve). 



IV. SUMMARY AND DISCUSSION

A new fast eigensolver in GYRO has been developed to analyze the spectrum of unstable

modes in high-beta, shaped plasmas. Initial-value analysis of gyrokinetic linear stability in

such plasmas is inconvenient, due to numerous, closely-spaced modes. Thus, an eigenmode

analysis, which can distinguish simultaneous dominant and sub-dominant modes, is highly

advantageous. Our method, which solves for the zeros of the Maxwell dispersion matrix,

rather than computing the eigenvalues of the much larger dispersion matrix corresponding

to the linear gyrokinetic equation, retains all of the linear physics of GYRO and is highly

efficient.

Systematic studies of the effects of compressional magnetic perturbations on the linear

eigenmode spectrum in high-beta plasmas were done through analysis of the dominant and

sub-dominant eigenmodes in parameter scans of a representative NSTX discharge. Even

for this linear analysis, these cases are found to be difficult because they are near marginal

stability and are further stronglystabilized by the high plasma pressure gradient. The main

results are as follows:

1. For all cases, the effects of the compressional magnetic component, δB‖, are found to

be significant, as the growth rates are largely underestimated if δB‖ is neglected, often

becoming completely stable.

2. At low and intermediate kθ, a transition from distinct ITG and KBM modes to a

hybrid ITG/KBM mode is observed at large pressure gradient.

3. At high kθ, an interesting cascade of Alfvénic drift modes forms, starting at the ground

state, with a simple parabolic-shaped δΦ eigenmode, and increasing to higher excited

states with more nodes along the field lines as the plasma pressure gradient increases.

4. A set of newly-identified compressional electron drift modes is identified at high kθ.

These appear only when δB‖ effects are included and are driven by simultaneous high

beta and pressure gradient.

Finally, we note that analysis of this NSTX discharge has differed from previous experi-

mental analysis of spherical torus plasmas, which have shown strongly unstable ETG modes

[30] and micro-tearing modes [18, 19, 31]. In this analysis, we found the ETG modes to
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be stable and no micro-tearing instabilities were observed. The former was found to be

due mostly to the low temperature gradient, which is perhaps also for the same reason for

the latter as the electron temperature gradient is believed to be a driver for these insta-

bilities. Nevertheless, due to the high beta and strong pressure gradient effects, the same

considerations apply. While in these studies our purpose was to elucidate beta and plasma

pressure gradient effects, the importance of collisions, rotation, and impurities, particularly

for NSTX which tends to have a large impurity concentration, also need to be considered for

accurate experimental modeling. Including these effects and the necessary higher-resolution

may make modeling the nonlinear gyrokinetic transport computationally challenging.
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APPENDIX A

The spatial discretization of the differential operators required for construction of the

Maxwell field matrix follows precisely the same approach as for the GYRO initial-value

solver, with the various stencils and quadrature methods discussed in detail in Ref. [5]. The

velocity-space variables in GYRO are

λ
.
=
Bunitv

2
⊥

Bv2
and ε

.
=
mav

2

2Ta
(A1)

Fluctuating quantities are evaluated on a species-independent mesh with radial nodes

{ri}nr
i=1, pitch-angle nodes {λk}nλ

k=1, energy nodes {εµ}nε
µ=1 and orbit-time nodes {τm}nτ

m=1.

The gyroaverage of the effective potential Ψ̃a, for species a, has the discrete representation

(Ψ̃a)
µ
ikm =

∑

i′σ

Gσaµ
ii′kmΦσ

i′km , (A2)
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where the three-potential Φσ at the same point in configuration space is given by the complex

Galerkin representation

Φσ
ikm =

∑
j

cσijFij(θkm) . (A3)

Here, cσij are the so-called blending coefficients, and Fij the basis functions defined in Sections

5.2 and 5.3 of Ref. [5]. The propagator has the matrix form

P aµ
ii′kk′mm′ = ωδii′kk′mm′ + (ωθ)

aµ
ikmm′δii′kk′ + (ωd)

aµ
ii′kmδmm′kk′ + (ωC)aµikk′mm′δii′ . (A4)

We can write the nonadiabatic distribution H̃a in terms of the inverse of the propagator as
(
H̃a

fMa

)aµ

ikm

=
zaena
Ta

(P−1)aµii′kk′mm′(ω − ωaµ∗i′k′m′)
∑
σ

Gσaµ
i′i′′k′m′

∑
j

cσi′′jFi′′j(θk′m′) . (A5)

Constructing the Galerkin projections of all three Maxwell equations, using the technique

described in Section 5.3 of Ref. [5], yields the matrix equation

Mσσ′
ii′jj′c

σ′
i′j′ =

[
Aσii′jj′δσσ′ −Bσσ′

ii′jj′(ω)
]
cσ
′
i′j′ = 0 , (A6)

where

Aσii′jj′ =
∑

km

F ∗ijkmL
σ
ii′kmF

∗
i′j′km (A7)

and

Bσσ′
ii′jj′(ω) =

∑
aµ

∑

i′′′km

∑

i′′k′m′

z2
ae

2na
Ta

wµkmF
∗
ijkmG

σaµ
ii′′′km(P−1)aµi′′′i′′kk′mm′(ω − ωaµ∗i′′k′m′)G

σ′aµ
i′′i′k′m′Fi′j′k′m′

(A8)

=
∑
aµ

∑

p,p′
Uaµ
qp (P−1)aµpp′V

aµ
p′q′ (A9)

= Bσσ′
qq′ . (A10)

Here, the weights wµkm are the products of the energy, pitch-angle and orbit-time weights

defined in Eq. (72) of Ref. [5]. In terms of these weights, the flux-surface average of the

velocity-space integration is written as

F
∫
d3vfMaΨa →

∑

kmµ

wµkm(Ψa)
µ
ikm with

∑

kmµ

wµkm = 1 . (A11)

In addition, we have defined the lumped indices p = (i′′′, k,m), p′ = (i′′, k′m′), q = (i, j, σ)

and q′ = (i′, j′, σ′). High performance is achieved by computing the inverse P−1 using

22



the LAPACK routines ZGETRF (LU decomposition) followed by ZGETRI (inverse), with the

subsequent matrix triple-product UP−1V evaluated using two sequential calls to the BLAS

ZGEMM kernel. Finally, det(M) is computed by the formula

det(M) = ±
∏
q

Lqq (A12)

where L is the lower-triangular matrix returned by the ZGETRF factorization. The upper

(lower) sign is taken if an even (odd) number of row permutations were made in the factor-

ization.
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