#### Interpretation of Core Localized Alfvén Eigenmodes in DIII–D and JET Reversed Magnetic Shear Plasmas



**EFDA** 

#### Presented by: G.J. Kramer<sup>1</sup>

In collaboration with: H. Berk<sup>2</sup>, E. Doyle<sup>3</sup>, G–Y. Fu<sup>1</sup>, N.N. Gorelenkov<sup>1</sup>, McKee<sup>4</sup>, R. Nazikian<sup>1</sup>, T.L. Rhodes<sup>3</sup>, S.E. Sharapov<sup>5</sup>, W. Solomon<sup>1</sup>, M. VanZeeland<sup>6</sup>

<sup>1</sup> Princeton Plasma Physics Laboratory, Princeton, NJ, USA

<sup>2</sup> Institute for Fusion Studies, Austin, TX, USA

<sup>3</sup> University of California, Los Angeles, CA, USA

- <sup>4</sup> University of Wisconsin, Madison, WI, USA
- <sup>5</sup> UKAEA, Culham, U.K.
- <sup>6</sup> Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA



Good progress has been made on the validation of reversed shear Alfvén eigenmode theory theory against new experimental data

- Validation of the NOVA–K code for normal shear scenarios has been successful
  N.N. Gorelenkov et al. Phys. Plasmas 11 (2004) 2586
- We want to validate the NOVA-K code also for Advanced Tokamak (AT) regimes so that we can make reliable predictions for AT regimes on ITER

Advanced Tokamak scenarios use non-monotonic magnetic shear configurations

 Such a benchmarking has become possible because of new measurements of Reversed Shear Alfvén Eigenmodes (RSAE) on DIII–D and JET

> RSAEs are able to enhance fast-ion transport and degrade the plasma performance





#### Good progress has been made on the validation of RSAE theory against new experimental data

- Many core–localized modes are observed in JET and DIII–D AT regimes with similar characteristics
- Modeling with NOVA–K allows the identification of RSAEs in AT regimes
  - NOVA–K is able to reproduce the frequency of low–n modes observed on JET
  - The localization of high–n modes on DIII–D is corroborated with NOVA–K calculations
- High–n toroidal mode numbers are inferred for core localized RSAEs in DIII–D from their Doppler shifts
- Investigate the RSAE stability with the NOVA–K code and obtain some first results for AT regimes





## Many core–localized modes are observed in JET and DIII–D AT regimes with similar characteristics





#### A multitude of modes is observed in ICRF heated plasmas on JET



• Reversed shear is created with a combination of LHCD and ICRH

no momentum input so very low toroidal plasma rotation
Modes measured from the start of the main ICRH heating (yellow box)

- A wealth of modes is observed on the microwave interferometer
- Only a few of those modes appear in the Mirnov coil signal

S.E. Sharapov et al. Phys. Rev. Lett. 93 (2004) 165001





#### The modes are characterized by frequency chirping



- The observed modes are characterized by:
  - frequency chirping on a 10 to 500 ms time scale
  - localized in the plasma core

These modes were called "Alfvén cascades" in JET



### Many of the fluctuation diagnostics on DIII–D have enabled new measurements of core–localized modes

- Beam–emission spectroscopy (BES) provides measurements of radial localized density fluctuations
  band width: 0.5 MHz
- Four chord CO<sub>2</sub> interferometer provides measurements of line integrated density fluctuations
  band width: < 1.6 MHz</li>
- Far infrared scattering (FIR) provides measurements of line integrated low-k (k<1 cm<sup>-1</sup>) density fluctuations band width: ~10 MHz
- q-profiles are measured with the Motional Stark Effect (MSE) diagnostic







#### Quiescent Double Barrier plasmas combine ELM–free edge plasma (QH–mode) with core transport barrier (ITB)

- Sustained ITB plasmas with performance above conventional H–mode
- Obtained with counter-NBI







#### Core–localized frequency chirping modes are also observed on DIII–D



• Reversed shear is created with a neutral beam injection (NBI)

- NBI is not balanced which leads to rapid toroidal plasma rotation
- Modes measured during the steady state phase (yellow box)
  - Many modes are observed on the far infrared scattering system
  - None of those modes appear in the Mirnov coil signal





### Modeling with NOVA–K allows the identification of RSAEs in AT regimes





#### NOVA-K is used to identify RSAEs in JET and DIII-D

- NOVA–K uses ideal MHD theory to calculate eigenmodes of tokamak plasma
- Kinetic extensions are used for the stability analysis:
  - ion and electron Landau, electron collisional, continuum, radiative damping
  - non-adiabatic fast-ion response
- Input to NOVA–K:
  - full plasma geometry
  - experimental profiles (pressure, q, density, temperatures)
  - toroidal mode numbers
- Output from NOVA–K:
  - Spectrum of eigenfrequencies of the modes
  - Radial structure of the eigenmodes
  - damping and growth rates of the modes





#### RSAEs reside at $q_{min}$ and evolve when $q_{min}$ changes







### NOVA–K is able to reproduce the frequency of low–n modes observed on JET



#### RSAEs are observed on Mirnov coils in JET



- Toroidal mode numbers are determined unambiguously from Mirnov coil data during the current ramp-up phase
- off-axis LHCD and ICRH create the reversed magnetic shear
- minimum of the q-profile is decreasing

O EFDA



#### Simulated frequency agrees very well with experiment

- The NOVA–K simulated frequency agrees very well with the measured n=1 and n=2 RSAE frequency
- The mode frequency follows the Alfvén continuum at q<sub>min</sub>
- Coupling to the geodesic acoustic mode included

EFDA



# The localization of high–n modes on DIII–D is corroborated with NOVA–K calculations





#### BES observes highly localized RSAEs







### BES density fluctuations are localized near q<sub>min</sub>



- MSE measurements reveal that density fluctuations are highly localized near q<sub>min</sub>
- The position of q<sub>min</sub> does not change in time only its value decreases in time







### NOVA-K confirms that RSAEs are localized at q<sub>min</sub>



- In the NOVA–K simulations it is found that RSAEs are localized at q<sub>min</sub>
- The localization increases with n

The localization of the modes found in the DIII–D experiments is compatible with the localization for RSAEs found with NOVA–K







## High–n toroidal mode numbers are inferred for core localized RSAEs in DIII–D from their Doppler shifts





### For high–n modes the Doppler shift is the main contributor to the observed frequency

- Measurements of the toroidal plasma velocity show that the plasma is rotating at about 23 kHz
- This is more than 10% of the Alfvén velocity
- The Doppler shift is n \* f<sub>Dop</sub>
  - $\begin{array}{ll} n & toroidal \ mode \ number \\ f_{Dop} & toroidal \ rotation \ frequency \end{array}$







### Rapid counter rotation changes the direction of the frequency chirp for high–n modes

Theory: modes chirp up from minimum RSAE to TAE frequency Experiment: frequency chirps down

This apparent down chirp is due to the large plasma rotation

- frequency in plasma frame: mode chirps up
  frequency in laboratory frame: f<sub>lab</sub> = | f<sub>mhd</sub> - n\*f<sub>Dop</sub> |
- In the current DIII–D experiments mode propagation is opposite to the plasma rotation







### Frequency evolution is accurately reproduced from the RSAE model and the Doppler shift





 Comparison between experiment and simulation reveals modes with mode numbers up to n=40





### The high toroidal mode numbers are confirmed from poloidal wave number measurements







## BES and MSE measurements in combination with NOVA–K gives poloidal and toroidal mode numbers



- NOVA–K shows: k<sub>θ</sub> varies with distance in poloidal direction
- BES and NOVA–K  $k_{\theta}$  agree well
- NOVA–K uses experimental q–profile q–profile from MSE, so:
  - Poloidal and toroidal mode numbers are known for core–localized RSAEs







# Investigate the RSAE stability with the NOVA-K code

first results for AT regimes



#### ICRH generated ions excite RSAEs on JET

- The RSAEs in JET are driven unstable by ICRH ions ion tail temperature ~140 keV
- Drive and damping vary with mode evolution
- TAE stabilization mechanisms: Landau damping radiative damping
- RSAE stabilization mechanism: continuum damping

EAN





### NOVA–K suggests that RSAEs interact strongly with thermal ions in DIII–D



- NBI is insufficient to drive the RSAEs
- The dominant resonances that excite the RSAEs in DIII–D are in the tail of the thermal ion distribution
- The main damping mechanism is electron Landau damping





#### RSAE induced fast-ion transport can be studied because fluctuation levels and mode structures are known

 BES measures saturated density fluctuation levels

for a single RSAE:  $\tilde{n}/n = 0.3\%$ 

 It then follows from NOVA–K that for a single RSAE:

 $\tilde{B}/B = 0.03 - 0.06\%$ 



- The next step is to model fast-ion transport induced by the RSAEs
  - the mode structures are known
  - the fluctuation levels are known
- The next challenge for theory development is to explain the observed mode saturation levels





#### Summary and outlook

- New measurements of core localized RSAEs on DIII–D and JET have enabled a detailed comparison with theory
- These RSAEs have been studied validate the NOVA-K code
  - reproducing the observed RSAE frequencies
  - calculating the observed mode localization
  - giving reasonable growth and damping rates
- NOVA–K suggests that a major contribution to the drive of the RSAEs in DIII–D comes from thermal ions
- This improved understanding leads to more reliable extrapolations for advanced tokamak scenarios on ITER
- The next challenges are to improve the stability analysis and the non–linear mode saturation mechanisms for predicting fast ion losses

