Interpretation of Core Localized Alfvéen Eigenmodes

In DIII-D and JET Reversed Magnetic Shear Plasmas

Presented by:
G.J. Kramer!

In collaboration with:

H. Berk?, E. Doyle®, G-Y. Fu?,

N.N. Gorelenkov!, McKee?, R. Nazikian®,
T.L. Rhodes®, S.E. Sharapov®,

W. Solomon?, M. VanZeeland®

! Princeton Plasma Physics Laboratory,
Princeton, NJ, USA

2 |nstitute for Fusion Studies, Austin, TX, USA

3 University of California, Los Angeles, CA, USA

4 University of Wisconsin, Madison, WI, USA

> UKAEA, Culham, U.K.

® Oak Ridge Institute for Science and Education,
Oak Ridge, TN, USA

r_
m, , d m E F D EUROPEAN FUSION DEVELOPMENT AGREEMENT
- ! s f ]
r‘.'ll.'-'l.il FLAA Pl f LJ—,ET PRINCETON P
S | PEVLY LA

Fasma

] IGRATONRY




Good progress has been made on the validation
of reversed shear Alfvén eigenmode theory

theory against new experimental data

e Validation of the NOVA-K code for normal shear scenarios
has been successful N.N. Gorelenkov et al. Phys. Plasmas 11 (2004) 2586

e \\Ve want to validate the NOVA—-K code also for Advanced
Tokamak (AT) regimes so that we can make reliable
predictions for AT regimes on ITER
Advanced Tokamak scenarios use
non—monotonic magnetic shear configurations

® Such a benchmarking has become possible because of new
measurements of Reversed Shear Alfvén Eigenmodes (RSAE)
on DIII-D and JET

RSAESs are able to enhance fast-ion transport
and degrade the plasma performance




Good progress has been made on the validation

of RSAE theory against new experimental data

e Many core-localized modes are observed in JET and DIlI-D
AT regimes with similar characteristics

e Modeling with NOVA-K allows the identification of RSAES
In AT regimes

® NOVA-K is able to reproduce the frequency of
low—n modes observed on JET

® The localization of high—n modes on DIII-D
IS corroborated with NOVA-K calculations

e High—n toroidal mode numbers are inferred for core
localized RSAEs in DIlI-D from their Doppler shifts

® Investigate the RSAE stability with the NOVA-K code
and obtain some first results for AT regimes




Many core—localized modes
are observed in JET and DIII-D
AT regimes

with similar characteristics




A multitude of modes Is observed

In ICRF heated plasmas on JET
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® Reversed shear is created with a combination of LHCD and ICRH
e N0 momentum input so very low toroidal plasma rotation

Modes measured from the start of the main ICRH heating (yellow box)
e A wealth of modes is observed on the microwave interferometer

e Only a few of those modes appear in the Mirnov coil signal
S.E. Sharapov et al. Phys. Rev. Lett. 93 (2004) 165001
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The modes are characterized by frequency chirping
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® The observed modes are characterized by:

e frequency chirping on a 10 to 500 ms time scale
e |ocalized in the plasma core

These modes were called "Alfvén cascades" in JET
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Many of the fluctuation diagnostics on DIII-D have

enabled new measurements of core—localized modes

® Beam-emission spectroscopy (BES) provides
measurements of radial localized density
fluctuations band width: 0.5 MHz

® Four chord CO, interferometer provides
measurements of line integrated density
fluctuations band width: < 1.6 MHz

e [ar infrared scattering (FIR) provides
measurements of line integrated low—k
(k<1 cm™) density fluctuations band width: ~10 MHz

e g-—profiles are measured with the Motional
Stark Effect (MSE) diagnostic




Quiescent Double Barrier plasmas combine ELM-free

edge plasma (QH—mode) with core transport barrier (ITB)

e Sustained ITB plasmas with performance above conventional H-mode
e Obtained with counter—NBI
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Core—localized frequency chirping modes

are also observed on DIII-D
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® Reversed shear is created with a neutral beam injection (NBI)
e NBI is not balanced which leads to rapid toroidal plasma rotation

® Modes measured during the steady state phase (yellow box)
e Many modes are observed on the far infrared scattering system
e None of those modes appear in the Mirnov coil signal




Modeling with NOVA-K
allows the identification
of RSAEs In AT regimes




NOVA-K Is used to identify RSAEs in JET and DIlI-D

e NOVA-K uses ideal MHD theory to calculate eigenmodes
of tokamak plasma

e Kinetic extensions are used for the stability analysis:
e ion and electron Landau, electron collisional, continuum, radiative damping

e non—adiabatic fast—-ion response

® |nput to NOVA-K:
* full plasma geometry
* experimental profiles (pressure, g, density, temperatures)
* toroidal mode numbers

e Qutput from NOVA-K:
* Spectrum of eigenfrequencies of the modes
* Radial structure of the eigenmodes
* damping and growth rates of the modes




RSAEs reside at q . and evolve when g . changes
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NOVA-K Is able to reproduce
the frequency of low—n modes
observed on JET



RSAEs are observed on Mirnov colls in JET
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e Toroidal mode numbers are determined unambiguously from
Mirnov coil data during the current ramp-up phase

e off-axis LHCD and ICRH create the reversed magnetic shear
e minimum of the g—profile is decreasing
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Simulated frequency agrees very well with experiment
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The localization of
high—n modes on DIII-D

IS corroborated with
NOVA-K calculations




BES observes highly localized RSAEs
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BES density fluctuations are localized near q_._
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e MSE measurements reveal that
density fluctuations are highly
localized nearq__

® The position of q . does not
change in time
only its value decreases in time
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NOVA-K confirms that RSAEs are localized atq_-

, displacement
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® |n the NOVA-K simulations it is found
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that RSAEs are localized atq__-

® The localization increases with n

flux coordinate (~r/a)
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The localization of the modes found in the DIlII-D experiments
IS compatible with the localization for RSAEs found with NOVA-K
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High—n toroidal mode numbers

are inferred for
core localized RSAEs in DIlI-D
from their Doppler shifts




For high—n modes the Doppler shift is

the main contributor to the observed frequency

® Measurements of the
toroidal plasma velocity

show that the plasma z _:
is rotating at about 2150 115
23 kHz " :

® This is more than 10% of
the Alfvén velocity 500E T 7

® The Doppler shift is
n* fDop
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fDOp toroidal rotation frequency

‘core density fluctuations

2.2 fime [s] 3.2




Rapid counter rotation changes the direction

of the frequency chirp for high—n modes

Theory: modes chirp up from minimum RSAE to TAE frequency
Experiment: frequency chirps down

This apparent down chirp is due to the large plasma rotation

1. frequency in plasma frame: 300
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® |n the current DIII-D experiments
mode propagation is opposite to  -200k ",
the plasma rotation
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Frequency evolution Is accurately reproduced

from the RSAE model and the Doppler shift
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The high toroidal mode numbers are confirmed

from poloidal wave number measurements
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BES and MSE measurements in combination with

NOVA-K gives poloidal and toroidal mode numbers
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® NOVA-K shows: kg varies with 74
distance in poloidal direction '

e BES and NOVA-K kg agree well 02 . VI
e NOVA-K uses experimental g—-profile k . NOVA-K [cm™} |
g-—profile from MSE, so:

® Poloidal and toroidal mode numbers
are known for core—localized RSAEs




Investigate the RSAE stabillity
with the NOVA-K code

first results for AT regimes
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ICRH generated ions excite RSAEs on JET

NOVA-K simulations
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NOVA-K suggests that RSAES interact strongly

with thermal ions in DIII-D
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® NBI is insufficient to drive the RSAESs

® The dominant resonances that excite the RSAEs in DIlII-D
are in the tail of the thermal 1on distribution

® The main damping mechanism is electron Landau damping
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RSAE induced fast-ion transport can be studied because

fluctuation levels and mode structures are known

® BES measures saturated
density fluctuation levels
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® The next step Is to model fast—ion transport induced by the RSAEs
e the mode structures are known

e the fluctuation levels are known

® The next challenge for theory development is to explain the
observed mode saturation levels




Summary and outlook

e New measurements of core localized RSAEs on DIlI-D and
JET have enabled a detailed comparison with theory

® These RSAEs have been studied validate the NOVA—-K code
e reproducing the observed RSAE frequencies
e calculating the observed mode localization
e giving reasonable growth and damping rates

® NOVA-K suggests that a major contribution to the drive
of the RSAEs in DIlI-D comes from thermal ions

® This improved understanding leads to more reliable
extrapolations for advanced tokamak scenarios on ITER

® The next challenges are to improve the stability analysis
and the non-linear mode saturation mechanisms
for predicting fast ion losses
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