Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Theory of ELMs

Philip B Snyder

Collaborators: H R Wilson, X Q Xu, A J Webster, D P Brennan, M Fenstermacher, A Leonard, W Meyer, T H Osborne, E J Strait, M Umansky, DIII-D Team

1General Atomics, San Diego, USA
2Culham Science Centre, Oxfordshire UK
3LLNL, Livermore, CA USA
4MIT, Cambridge, MA USA

APS Division of Plasma Physics Meeting
Savannah, GA, 17 November 2004
Motivation and Background

- ELMs and the edge pedestal are key fusion plasma issues
 - “Pedestal Height” controls core confinement and therefore fusion performance (Q)
 - ELM heat pulses impact plasma facing materials

Predicted Impact of Pedestal Height

Observed Impact of Pedestal Height

- J. Kinsey
- DIII-D, T. Osborne

General Atomics
Background: Extending the Peeling-Ballooning Model

- **Peeling-Ballooning Model of ELMs** - significant successes
 - ELMs caused by intermediate wavelength (n~3-30) MHD instabilities
 - Both current and pressure gradient driven
 - Complex dependencies on ν^*, shape etc due to bootstrap current and “2nd stability”
 - Successful comparisons to experiment both directly and in database studies
- **Need to understand sources and transport to get profile shapes** (“pedestal width”)
- **Rotation and non-ideal effects to precisely characterize P-B limits, nonlinear dynamics for ELM size and heat and particle loading on material surfaces**
Outline

• Toroidal Flow Shear
 – How toroidal rotation complicates ballooning theory (1D⇒2D)
 – Eigenvalue formulation
 – Impact on peeling-balloonning modes in the tokamak edge region
• Nonlinear ELM Simulations
 – General challenges
 – 2 fluid reduced Braginskii (BOUT) simulation results
 • Expected peeling-balloonning characteristics in linear phase
 • Explosive, radially propagating filaments in nonlinear phase
 – Comparison to Observations
 – Proposals for dynamics of the full ELM crash
• Summary and Future Work
Ballooning mode theory with rotation

Static:

For large n and solutions $\sim e^{nt}$, derive the ballooning equation:

$$L \left(\frac{\partial}{\partial \theta}, q'(\theta - \theta_0), \gamma(\theta_0) \right) \xi = 0$$
A 2nd order ODE, 1D eigenvalue problem

Higher order theory \Rightarrow choose θ_0 to maximize $\gamma(\theta_0)$

With sheared toroidal flow:
$v = R^2 \Omega(\psi) \nabla \phi$
$\frac{R\Omega}{C_s} \sim n^{-1} \ll 1$
$\frac{1}{q'} \frac{\partial (R \Omega / C_s)}{\partial \psi} \sim 1$

Using a time dependent eikonal approach

$$L \left(\frac{\partial}{\partial \theta}, q'(\theta - \theta_0 + \Omega't / q'), \frac{\partial}{\partial t} \right) \xi = 0$$
A 2D initial value problem

Cooper, PPCF 30, 1805 (1988)

Low flow shear, separable solution \Rightarrow average of $\gamma(\theta_0)$ over θ_0

$$\gamma = \frac{1}{2\pi} \int \gamma(\theta_0) d\theta_0$$
Waelbroeck and Chen Phys Fluids B3 601 (1991)

—There is a discontinuity in the theory, which we would like to understand
—Suggests that flow shear could in principle have a big effect on ballooning modes

UKAEA Fusion
Working with Europe

GENERAL ATOMICS
Flow shear and the Eigenmode Formalism

• Would like to develop an eigenmode formalism for the effect of flow shear on ballooning modes:
 — Smoothly connect to the conventional ballooning modes as $\Omega' \rightarrow 0$ and understand this ‘discontinuity’
 — Calculate the radial eigenmode structure
 — Provides an eigenmode frequency
 — Enables consideration of finite n corrections
 — Permits flow shear to be incorporated into ELITE (an eigenmode code)
 • Evaluate impact on P-B modes in experimental equilibria

• Eigenmode formalism derived and implemented
Including finite-n via eigenmode formulation resolves small rotation discontinuity

s- α geometry: $s=1.0$ $\alpha=1.7$

\[\text{Re}(\gamma) \]

\[\Lambda = L(nq)^{1/2} \]

Conventional Ballooning
Max $\gamma(\theta_0)=0.68$

Rotation Ballooning
\[
\frac{1}{2\pi} \int \gamma(\theta_0) d\theta_0 = 0.28
\]

Discontinuity resolved, transition from static ballooning slows with decreasing n
ELITE is a Highly Efficient MHD Stability Code for $n > \sim 5$

ELITE is a 2D eigenvalue code, based on ideal MHD (amenable to extensions):
- Generalization of ballooning theory:
 1) incorporate surface terms which drive peeling modes
 2) retain first two orders in $1/n$ (treats intermediate $n > \sim 5$)
- Makes use of poloidal harmonic localization for efficiency
- Successfully benchmarked against GATO, MISHKA, MARS, BAL-MSC
- Code extended to include leading order ($n\Omega \sim 1$, $\Omega' \sim 1$) sheared toroidal flow and compression - results qualitatively similar to s-α
Flow Shear Effect on Growth Rates is Modest in Standard ELMing Discharges, Mode Structure Does Change

Rotation Shear on P-B Modes:
- Stabilizing near marginality
- Finite n and large γ dramatically reduce effect
- Does not measurably change expected ELM onset time in typical ELMing discharges

Measured (DIII-D 113207)

- Mode structure strongly altered
 - Narrowing and phase changes
 - May impact dynamics, ELM size
Calculated Mode Rotation Agrees with Observation during ELM

- Measured rotation profile strongly sheared just before the ELM, becomes ~flat at ~45km/s across pedestal region at ELM onset
- Study with ELITE finds peeling-ballooning unstable just before ELM - most unstable mode (max \(\gamma/\omega_* \)) is n=9
- Calculated frequency for this n=9 mode is \(\omega/\omega_A=0.0082 \), \(V_{\text{rot}}=45\text{km/s} \)
- Suggests “locking” of pedestal region to the mode during initial phase of ELM crash \(\Rightarrow \) edge barrier collapse
Summary of Toroidal Flow Shear Impact on P-B Modes

- Toroidal flow shear generally stabilizing at high n, effect reduced with decreasing n
- For experimental profiles:
 - Stabilization near marginal point, weak effect on growth rate away from marginal point (except for high n)
 - Slightly delay ELM onset time, and reduce most unstable n value
 - Effect stronger at low s (high Ω'/q'), e.g. where local shear is reduced by high bootstrap current (low ν^*, high pedestal). May play a significant role in QH and “grassy ELM” regimes
- Substantial radial narrowing of eigenmode
- Mode eigenfrequency matches plasma Ω near top of pedestal
 - Observations suggest “locking” of bulk rotation during early ELM crash
- Both of the above effects can have important impacts on the dynamics of the ELM crash
Nonlinear Edge/Pedestal Simulations

• Many challenges for nonlinear simulations of the edge region
 – Broad range of overlapping scales and physics (L-H transition, sources and transport, ELMs, density limit..)
 – Many techniques used to simplify core simulations not applicable in edge
 – Long term goal is to unite full set of physics into massive scale simulations

• Here we focus on the fast timescales of the ELM crash event itself
 – Goal is to understand physics determining ELM size and heat deposition
 – Initialize with P-B unstable equilibria, evolve dynamics on fast timescales

• Reduced Braginskii 2 fluid simulations with the 3D BOUT code [X Q Xu et al Nucl Fus 42 21 2002]
BOUT Simulation Geometry

- BOUT incorporates 2 fluid/diamagnetic physics and uses field line following coordinates
 - Bundle of lines (left) wraps around 2π poloidally
 - A group of such bundles (right) spans the flux surface
 - For ELM simulations, generally go 1/5 (or 1/2) of the way around the torus, ie treat $\Delta n=5$ (or $\Delta n=2$), $n=0,5,10,\ldots,160$, $0.9 < \Psi < 1.1$ both closed and open flux surfaces
 - Equilibrium current (kink term) added for ELM studies
Fast ELM-like Burst Seen in BOUT Simulations

- High density (small ELM), DIII-D LSN case, $0.9 < \psi < 1.1$
- Initial linear growth phase, then fast radial burst begins at $t \sim 2000$, can see positive density (light) moving into SOL and negative density perturbations near pedestal top
- Radial burst has filamentary structure, extended along B field
Expected Peeling-Ballooning Character in Early Phase

- Plots show projections of bundles of field lines onto the RZ plane - field lines extend into and out of page (radial vs parallel)

- Linear phase: Mode has ~expected characteristics of linear mode, radial and poloidal extent, $n \sim 20$, $\gamma/\omega_A \sim 0.15$
 - Reducing gradients slightly stabilizes the mode- abrupt onset near P-B boundary

- Fast Burst: Filaments extended along the field, but irregular
Fast ELM Burst Shows Toroidal Localization, “finger”

- R,φ plots on outer midplane
- Linear phase, n=20. Burst occurs asymmetrically at a particular toroidal location.
- Burst location is point of maximum resonance between dominant linear mode (n=20) and dominant nonlinearly driven beat wave
- “Finger” is an extended filament along the field, which propagates rapidly into the open field line region
Similarities to Nonlinear Ballooning Theory

 - Nonlinear terms weaken field-line bending, accelerating mode growth
 - In nonlinear regime, perturbation grows like $\sim 1/(t_0-t)^{r}$

- Perturbed density in nonlinear simulations grows like $\sim 1/(t_0-t)^{0.5}$ (theory $r\sim 1.1$)
- Growth rate increases with time, increases rapidly during burst
 - Significant complexity, characteristic lull in growth rate prior to radial burst
 - Possible association with symmetry-breaking event when $\delta n \sim n_{0 loc}$
One Filament or Many?

- Same case, initialized with a pure $n=20$ mode
 - Largely eliminates nearest neighbor coupling to generate beat wave
- Remains dominated by harmonics ($n=0,20,40,60,80$) well into nonlinear phase
- Burst occurs fairly symmetrically, multiple propagating filaments
- Evidence of secondary instability breaking up filaments

Both single and multiple filament cases are possible. Dependence on flatness of γ spectrum and rate at which profiles are driven across the marginal point.
Filaments Observed During ELMs

DIII-D Observation [E Strait, Phys Plas 1997]

- Filament observed in fast magnetics during ELM (left)
- Finger-like structure from simulation (right) is extended along the magnetic field
- Qualitatively similar (rotation rate consistent with toroidal extent)
Fast ELM Observations: Multiple Machines

- n=10 structure on outboard side
- Filaments moving radially outward

M. Fenstermacher, DIII-D, IAEA 2004

- CIII images from fast camera on DIII-D
- n~18 inferred from filament spacing
Fast CIII Images on DIII-D show filamentary structure

- ELITE linear P-B calculation on kinetic equilibrium shows peak $15 \leq n \leq 25$; mode in this range predicted to be first to go unstable
- Calculated structure of $n = 18$ mode similar to images
 - Poloidal structure similar to outer midplane SOL structure in images
 - 3D structure has similar m/n structure seen in images
- Nonlinear simulations show symmetric structure in early phase, extended uneven filaments later
Proposals for ELM Particle and Energy Losses

- Radially propagating filaments (one or many) carry only a small fraction of energy lost during an ELM

- Two possible mechanisms for the full ELM loss:
 1) **Conduits**: Heat and particles flow along filaments while ends remain connected to hot core. Fast diffusion/secondary instabilities allow flow across filament to open flux SOL plasma.

 2) **Barrier Collapse**: Radial eruption of filament (with fixed eigenfrequency) damps sheared rotation as it moves outward, collapses sheared E_r and edge transport barrier. Temporary return to L-mode-like transport+. Reduced gradients re-stabilize mode, allowing shear and pedestal to be re-established. [*E_r well collapse during ELM observed on DIII-D, see Wade CI2A.002*]

- Possible that both mechanisms are active. Collisional restriction of heat flow along filaments may explain transition to convective ELMs at high collisionality.
Summary

• Peeling-ballooning model has achieved a degree of success in explaining pedestal constraints, ELM onset and a number of ELM characteristics
 - Extend to include rotation and nonlinear, non-ideal dynamics

• Toroidal rotation shear included in ELITE
 - Discontinuity in previous studies removed via eigenmode formulation
 - Small effect on predicted ELM onset, but significant modification of mode structure
 • Real frequency of mode matches plasma rotation near center of mode
 - Encouraging comparisons with fast CER observations, suggests mode damps flow shear

• 3D nonlinear ELM simulations carried out with BOUT
 - Early structure and growth similar to expectations from linear Peeling-Ballooning
 - Radially propagating filamentary structures, grow explosively
 • One or many filaments possible (dependence on spectral shape and heating rate; single filament due to resonance of lin & nonlin modes)
 • similar to observations (eg MAST and DIII-D), and nonlinear ballooning theory
 - Filaments acting as conduits and collapse of the edge barrier provide possible mechanisms for full ELM particle and energy losses
Future Work

• Extend duration of existing simulations, test proposals for ELM losses, compare to expt

• Move on to larger problems:
 1) Toroidal scales – For some types of ELMs, need full torus (n=1 to ∼ρ₁)
 2) Radial scales – extend to wall and further into core
 3) Time scale – Include sources and drive pedestal slowly across P-B boundary

• Scale overlap and close coupling with pedestal formation (L-H) physics, inter-ELM transport and source (including atomic) physics

• Need optimal formulations (collisionless), efficient numerics and large computational resources
References