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QUIESCENT H–MODES ARE THE IDEAL H–MODE PLASMAS

● Quiescent H–modes (QH–mode) exhibit the H–mode confinement
improvement HITER-89P ≅ 2
— Constant density and radiated power
— Long duration (>4 s or 30 τE, 2τR) limited only by hardware constraints

● QH–modes remain free of edge localized modes (ELMs) at all input
powers from 3 MW up to those needed to reach the core beta limit
(~15 MW)

● No ELMs means no pulsed divertor heat loads

— Quite important for next-step devices such as ITER

● Quiescent edge is compatible with core transport barriers

● In order to utilize the advantages of QH–mode in future devices, the
goals of our research are to
— Improve our physics understanding of the QH–mode
— Broaden the QH–mode operating space using scans suggested by

MHD stability theory



QUIESCENT H–MODE RUNS ELM–FREE FOR LONG 
PULSES WITH CONSTANT DENSITY AND RADIATED POWER
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● Duration limited by neutral beam pulse length
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 QUIESCENT H–MODE HAS BEEN SEEN 
OVER A RANGE OF PARAMETERS

● Requires neutral beam injection
 counter to Ip direction plus
 divertor cryopumping

● Low field example at 
 BT = 0.95 T, Ip = 0.67 MA
 and ne     = 1.1×1019 m–3

High Density QH–Mode

● QH–mode seen to date for
  3.1 ≤ q95 ≤ 5.8
  1.0 ≤ Ip (MA) ≤ 2.0
  1.8 ≤ BT (T) ≤ 2.1
  1.0 ≤ ne     (1019 m–3) ≤ 6.5
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KEY QUESTIONS FOR QUIESCENT H–MODE

● Why do the ELMs go away? What is the stabilization mechanism?

— Peeling/ballooning mode theory explains some of the observations
— Edge rotation or radial electric field effects play a role

● What is the role of edge electromagnetic oscillations such as the edge
harmonic oscillation (EHO)?

— Enhanced particle transport relative to that in ELMing phase

● Does QH–mode extrapolate well to future devices?

— Obtained pedestal β and ν* values bracketing the ITER
design values

— QH–mode seen over a range of ρ* in DIII-D, ASDEX-U, JET,
and JT-60U



EDGE PEELING-BALLONING THEORY PROVIDES A GOOD
WORKING HYPOTHESIS FOR ELM STABILITY IN QH–MODE
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● Diagram shows simplified 
 overview of theory

● Stable region expands markedly 
 with plasma shaping
 — Weak shaping is circular cross section
 — Stronger shaping is modest triangularity, 
  elongated, single null divertor
 — High triangularity double null divertor 
  (not shown) has even broader stable region

● First question is: Where does QH–mode
 lie in this operating space?
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DIII–D QH–MODE OPERATES NEAR EDGE
CURRENT LIMIT TO PEELING MODES
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● Increasing plasma current (1 MA/s) in 
 QH–mode plasmas causes return of 
 ELMs in about 20 ms, while decreasing 
 current at same rate allows plasma to 
 stay in QH–mode
 — Ramp rates as low as 0.15 MA/s 
  cause return of ELMs

● This behavior indicates the QH–mode 
 edge is close to the Jedge limit in the
 peeling -ballooning mode diagram

● Being close to this limit is also 
 consistent with control room 
 observation that QH–mode is easier 
 to get at lower plasma currents
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DIII–D QH–MODE OPERATES NEAR 
EDGE CURRENT LIMIT TO PEELING MODES
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INPUT BEAM POWER IS CHANGED TO CHANGE PLASMA GRADIENTS
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● Core density, ion temperature and rotation gradients steepen with increasing input power
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INPUT BEAM POWER IS CHANGED 
IN ATTEMPT TO CHANGE EDGE GRADIENTS
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● Edge gradients saturate as power increases
● Process limiting edge gradients allows QH–mode operation at powers up to core beta limit
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DIII–D QH–MODE OPERATES NEAR 
EDGE CURRENT LIMIT TO PEELING MODES
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● More than doubled the pedestal density and pressure with higher triangularity
● n

e
PED/nG rises from 0.1 to 0.25

HIGHER TRIANGULARITY GREATLY EXPANDS
QH–MODE PARAMETER SPACE
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INCREASING TRIANGULARITY IN DOUBLE NULL PLASMA
PRODUCES RISE IN ELECTRON AND ION PEDESTAL PRESSURE
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  Ion pedestal pressure doubles
 and electron pedestal pressure more 
 than doubles

  Ion pressure is dominant 
 contribution to pedestal pressure

  Increased triangularity is the key 
 to quiescent operation at higher 
 pedestal pressure and density
 — ELMs return at this density in
  lower triangularity shots
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ELITE STABILITY MODELING: QH–MODE IS MARGINALLY STABLE 
TO CURRENT DRIVEN PEELING/BALLOONING MODES
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EDGE POLOIDAL FIELD FROM CALCULATED CURRENT
COMPARES WELL WITH LITHIUM BEAM MEASUREMENT
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MATCHED PAIR OF CO AND COUNTER INJECTED DISCHARGES
SELECTED FOR ELMING (CO) VERSUS QUIESCENT (COUNTER)
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● Shots selected for identical shapes and pedestal parameters at time quiescent
 phase starts in counter injected shot
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MATCHED PAIR OF CO AND COUNTER INJECTED DISCHARGES
SELECTED FOR ELMING (CO) VERSUS QUIESCENT (COUNTER)
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● Both have IP = 1.36 MA, BT = 1.9 T, βT = 3.0%
● Outer flux surface shapes are identical
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EDGE Vφ and Er ARE QUITE DIFFERENT IN MATCHED PAIR
OF ELMING (CO) AND QUIESCENT (COUNTER) DISCHARGES
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  Er and Vφ affect ELM stability

  Vφ effects recently added to ELITE
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EHO CAN SPONTANEOUSLY CHANGE TOROIDAL MODE NUMBER
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EHO TRANSPORTS PARTICLES MORE RAPIDLY THAN ELMS
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● Density drops when EHO turns
 on and rises when it ceases
 — Particle input constant

● Pressure in pumping plenum
 rises when EHO turns on, 
 consistent with particle exhaust
 from plasma
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IMPURITIES AT THE PLASMA EDGE ARE EXHAUSTED FASTER 
IN THE QH–MODE PHASE THAN IN THE ELMING PHASE
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● The impurity particle confinement time at the plasma edge increases
 with the pedestal density        
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IMPURITIES AT THE PLASMA EDGE ARE EXHAUSTED FASTER 
IN THE QH–MODE PHASE THAN IN THE ELMING PHASE
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● The impurity particle confinement time at the plasma edge increases
 with the pedestal density        

● EHO exhausts impurities faster than ELMs
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EDGE PRESSURE AND ROTATION CHANGE WHEN
EHO TURNS ON AND OFF; PEDESTAL Te AND Ti DON’T CHANGE
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EHO AMPLITUDE DOES NOT CORRELATE WITH 
SATURATION OF EDGE PROFILES AS POWER INPUT INCREASES
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BROADBAND EDGE ELECTROMAGNETIC
ACTIVITY EXHAUSTS PARTICLES
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● Constant density QH–mode operation is possible without ELMs or EHO
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CONCLUSIONS
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● Peeling-ballooning mode theory allows explanation of
 — QH–mode current limits
 — Substantial improvement in edge pressure with triangularity

● Edge electron and ion pressures saturate as power flow through
       the separatrix increases in QH–mode
 — Allows QH operation up to powers needed to reach beta limit
 — Mechanism at present is unknown (related to EHO??)

● Comparison of co- and counter-injected discharges at same electron parameters 
 indicates that edge Er or toroidal rotation plays a role in ELM stabilization

● Edge harmonic oscillation facilitates particle transport (electron, main ion  
 and impurity) across the plasma edge
 — EHO-induced particle transport is faster than transport averaged over ELMs
 — Other electromagnetic modes can have similar effect on particle transport
 — EHO decreases pedestal density and rotation; no effect on Te

ped and Ti
ped

● QH–mode extrapolates well to next step machines
 — DIII–D has operated at pedestal β and ν* values bracketing the ITER values
 — QH–mode has been seen over a range of ρ*: 3.5×10–3 ≤ ρ* ≤ 1.5×10–2

  (DIII–D, ASDEX, JT-60U, JET)
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