Optimization of DIII-D Advanced Tokamak Discharges With Respect to the Beta Limit

J.R. Ferron, T.A. Casper,^{a)} E.J. Doyle,^{b)} A.M. Garofalo,^{c)} P. Gohil,

C.M. Greenfield, A.W. Hyatt, R.J. Jayakumar,^{a)} C. Kessel,^{d)} J.Y. Kim,^{e)}

T.C. Luce, M.A. Makowski,^{a)} J. Menard,^{d)} M. Murakami,^{f)} C.C. Petty, P.A. Politzer, T.S. Taylor, and M.R. Wade^{f)}

General Atomics, P.O. Box 85608, San Diego, California 92186-5608
^{a)}Lawrence Livermore National Laboratory, Livermore, California.
^{b)}University of California – Los Angeles, Los Angeles, California.
^{c)}Columbia University, New York, New York.
^{d)}Princeton Plasma Physics Laboratory, Princeton, New Jersey.
^{e)}Korea Basic Sciences Institute.
^{f)}Oak Ridge National Laboratory, Oak Ridge, Tennesee.

November 16, 2004

Abstract:

Results are presented from comparisons of modeling and experiment in studies to assess the best choices of safety factor (q) profile, pressure profile and discharge shape for high beta, steady-state, noninductive advanced tokamak operation in the DIII-D device [J. L. Luxon, Nucl. Fusion **42**, 614 (2002)]. These studies are motivated by the need for high $q_{\min}\beta_N$ to maximize the self-driven bootstrap current while maintaining high toroidal beta to increase fusion gain. Modeling shows that increases in the normalized beta (β_N) stable to ideal, low toroidal mode number (n = 1, 2) instabilities can be obtained through broadening of the pressure profile and use of a symmetric double-null divertor shape. Experimental results are in agreement with this prediction. The general trend is for $q_{\min}\beta_N$ to increase with the minimum q value (q_{\min}) although β_N decreases as q_{\min} increases. By broadening the pressure profile, $\beta_N \approx 4$ is obtained with $q_{\min} \approx 2$. Modeling of equilibria with near 100% bootstrap current indicates that operation with $\beta_N \approx 5$ should be possible with a sufficiently broad pressure profile.