Classification of Low-Mode and High-Mode States with a Pattern-Recognition Algorithm

R.D. Deranian,¹ R.J. Groebner,² and D.T. Pham¹

¹Intelligent Systems Research Laboratory, Cardiff University, Wales, UK email: deranian@fusion.gat.com

²General Atomics, P.O. Box 85608, San Diego, California 92186-5608 USA

(Received)

Edge operational space diagrams which discriminate well between the Low-mode (L-mode) and High-mode (H-mode) states in the DIII-D tokamak [J.L. Luxon, R. Anderson, F. Batty, C.B. Baxi, G. Bramson, N.H. Brooks, B. Brown, et al., in Proceedings of the 11th Conference on Plasma Physics and Controlled Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol I, p. 159] have been obtained with a pattern recognition algorithm. This study used a large database that consists of plasma current I_p , toroidal magnetic field B_T , electron temperature T_e, electron density n_e, electron pressure P_e and the gradients of T_e, n_e and P_e, evaluated at the edge of the plasma in the region where the H-mode transport barrier forms. Identifications of parameters which best discriminate between the L-mode and H-mode states have been performed for a density scan, a current scan and a toroidal field scan. A common feature of the identifications is that ∇T_e emerges by itself or in combination with other measured parameters as one of the identification parameters. A large range of scale lengths $T_e/\nabla T_e$ and low values for $\nabla T_e/I_p$ are found to characterize the L-mode. In contrast the H-mode is characterized by low values of the temperature scale length and a large range of values for $\nabla T_e/I_p$.

PACS No. ?????????