Dimensionless Scaling of the Critical Beta for Onset of a Neoclassical Tearing Mode

R.J. La Haye, R.J. Buttery, a) S. Guenter, b) G.T.A. Huysmans, c) M. Maraschek, b) and H.R. Wilson a)

General Atomics, P.O. Box 85608, San Diego, California 92186-5608 U.S.A.

Abstract

The islands from tearing modes driven unstable and sustained by the helically perturbed neoclassical bootstrap current often provide the practical limit to long-pulse, high confinement tokamak operation. The destabilization of such “metastable” plasmas depends on a “seed” island exceeding a threshold. A database from similar regimes [high confinement H-mode with periodic edge localized modes (ELMs) and periodic central sawteeth] was compiled from the tokamaks ASDEX Upgrade (AUG), DIII–D, and JET. Comparison is made of the measured critical beta for onset of the \(m/n = 3/2 \) mode (\(m \) and \(n \) being the poloidal and toroidal Fourier harmonics, respectively) to a model in terms of dimensionless parameters for the seed and threshold islands. This modeling is then used for extrapolation to a reactor-grade tokamak design such as ITER/FDR; this indicates that the seed island from sawteeth could be too small to sufficiently disturb the metastable plasma and excite the \(m/n = 3/2 \) neoclassical tearing mode.

a) Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom
b) Max-Planck Institut für Plasmaphysik, Garching, Germany.
c) JET Joint Undertaking, Abingdon, United Kingdom; presently at CEA Cadarache, France.