Measurement of Plasma Electron Temperature and Effective Charge During Tokamak Disruptions

D.G. Whyte,² D.A. Humphreys,¹ and P.L. Taylor¹

¹University of California, San Diego, La Jolla, California 92093-0319 ²General Atomics, San Diego, California 92186-5608

The fundamental plasma parameters of electron temperature (T_e), and effective charge (Z_{eff}) are measured simultaneously for the first time during a tokamak major disruption. The measurement of T_e and Z_{eff} is critical in understanding disruption behavior, since together they define both the plasma's resistivity and ionization/energy balance. The measurement technique, which uses extreme ultraviolet (XUV) helium recombination radiation, is described and validated self-consistently by spectroscopy and other diagnostics on the DIII–D tokamak.

PACS Nos.: