Topic	А	Requested:	\boxtimes	Oral		Poster	Panel suggestion:		Oral		Poster
-------	---	-------------------	-------------	------	--	--------	-------------------	--	------	--	--------

MHD-Driven SOL Pressure and Flows*

M.J. Schaffer, J.A. Boedo,[†] N.H. Brooks, R.C. Isler,[‡] R.A. Moyer[†]

General Atomics, P.O. Box 856908, San Diego, California 92186-9784, USA

MHD theory applied to open tokamak scrape-off layer (SOL) magnetic lines demands a large poloidal pressure gradient in the upstream plasma during divertor detachment, due to blockage of the Pfirsch–Schlüter (P–S) electric current.¹ Thus, the usual approximation of nearly uniform pressure on a SOL surface is invalid, and the gradient drives parallel flows at Mach ~1 that might significantly alter energy transport to the detached divertor plasmas. This theory is compared against experiment in this paper.

Pfirsch–Schlüter current arises in toroidal plasmas to satisfy $\nabla \cdot J = 0$. When the SOL P–S current passes freely through conducting divertor targets, $\nabla \cdot J = 0$ is satisfied by conventional SOL equilibria with pressure gradients concentrated just in front of the targets. Target–mounted Langmuir probes detect this current.² However, the measured target current disappears as detachment is approached.^{1,2} Then, $\nabla \cdot J = 0$ is satisfied completely within the SOL, which requires at least one zone of cross–*B* current and a corresponding poloidal pressure gradient in the upstream SOL.¹ The pressure gradient drives additional parallel flow, convecting energy and particles. The expected pressure differential at conventional tokamak aspect ratios of $R/a \sim 3$ is about 2:1, and the parallel speed effect is of order Mach ~ 1. Even larger effects are predicted for lower aspect ratio tokamaks.

Experimental data were taken during lower-single-null divertor operation in the DIII-D tokamak. The two-dimensional (r, z) distribution of n_e , T_e and p_e is measured by both Thomson scattering and moveable Langmuir probe diagnostics. T_i is measured by Doppler broadening of various visible spectral lines along multiple viewing chords. Parallel velocity is measured by Doppler shifts and also by a moveable Mach probe. Preliminary data indeed show high p_e in the divertor X-point region relative to p_e upstream on the same magnetic surface, in qualitative agreement with the theory. The X-point overpressures occur on open SOL surfaces, but not on private flux surfaces. Overpressures have been observed during both Ohmic and ELMing H-mode operation. More complete data are being taken and will be presented.

^{*}Work supported by U.S. Department of Energy under Contract Nos. DE-AC03-89ER51114, DE-AC05-96OR22464, and Grant No. DE-FG03-95ER54294.

[†]University of California, San Diego.

[‡]Oak Ridge National Laboratory.

¹M.J. Schaffer, submitted to Comments on Plasma Phys. and Controlled Fusion (1997).

²M.J. Schaffer *et al.*, Nucl. Fusion **37** (1997) 83.