Heat flux management via advanced magnetic divertor configurations and divertor detachment

E. Kolemen^{a*}, S.L. Allen^b, B.D. Bray^c, M.E. Fenstermacher^b, D.A. Humphreys^c, A.W. Hyatt^c, C.J. Lasnier^b, A.W. Leonard^c, M.A. Makowski^b, A.G. McLean^b, R. Maingi^a, R. Nazikian^a, T.W. Petrie^c, V.A. Soukhanovskii^b, and E.A. Unterberg^d

Abstract. The Snowflake Divertor (SD) control and detachment control to manage the heat flux at the divertor are successfully demonstrated at DIII-D. Results of the development and implementation of these two heat flux reduction control methods are presented. The SD control algorithm calculates the position of the two null-points in real-time and controls shaping coil currents to achieve and stabilize various snowflake configurations. Detachment control stabilizes the detachment front fixed at specified distance between the strike point and the X-point throughout the shot.

^aPrinceton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

^bLawrence Livermore National Laboratory, Livermore, California 94550, USA

^cGeneral Atomics, PO Box 85608, San Diego, California 92186-5608 USA

^dOak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831 USA