P2-086

Measurements of gross erosion of Al in the DIII-D divertor

C. Chrobak^{a*}, P.C. Stangeby^b, A.W. Leonard^a, D.L. Rudakov^c, C.P.C. Wong^a, A.G. McLean^d,

G.M. Wright^e, D.A. Buchenauer^f, J.G. Watkins^f, W.R. Wampler^f, J.D. Elder^b, R.P. Doerner^c,

D. Nishijima^c, and G.R. Tynan^c

^aGeneral Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

^bUniversity of Toronto Institute for Aerospace Studies, Toronto, M3H 5T6, Canada

^cUniversity of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417, USA

^dLawrence Livermore National Laboratory, 700 East Ave, Livermore, California 94550, USA

^eMassachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA

^fSandia National Laboratory, P.O. Box 5800, Albuquerque, New Mexico 87185, USA

Abstract

Aluminum (Al) is a convenient proxy for beryllium (Be) plasma material interaction studies since they have a number of physical and chemical similarities. Al samples were exposed at the lower outer strike point of an L-mode divertor plasma in DIII-D (conditions $7-11 \times 10^{18}$ D-ions cm² – s, $T_e = 12-47$ eV). The gross erosion rate was directly measured using post-mortem ion beam analysis of small 1 mm-sized samples where local re-deposition was determined to be negligible. The gross erosion rate was also calculated using spectroscopic methods, but these rates greatly underestimate the direct (i.e. non-spectroscopic) measurement. The direct measured erosion yields were within the range of published D⁺→Al ion beam sputtering yields. The ionizations per photon (S/XB) coefficients used in the spectroscopic analysis were determined in separate experiments using He plasmas at the PISCES-B linear plasma facility at UCSD. The measured S/XB coefficients were on average ~6X higher than the theoretically calculated values.