An experimental comparison of gross and net erosion of Mo in the DIII-D divertor

P.C. Stangeby,¹ D.L. Rudakov,² W.R. Wampler,³ J.N. Brooks,⁴ N.H. Brooks, D.A. Buchenauer,⁵ J.D. Elder,¹ A. Hassanein,⁴ A.W. Leonard, A.G. McLean,⁶ A. Okamoto,⁷ T. Sizyuk,⁴ J.G. Watkins,³ and C.P.C. Wong

¹University of Toronto Institute for Aerospace Studies, Toronto, M3H 5T6, Canada

²University of California-San Diego,9500 Gilman Dr., La Jolla, California 92093-0417, USA

³Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

⁴Purdue University, West Lafayette, Indiana 47907 USA

⁵Sandia National Laboratories, P.O. Box 969, Livermore, California 94551-0969, USA

⁶Lawrence Livermore National Laboratory, Livermore, California 94550, USA

⁷Tohoku University, Sendai, Japan

Abstract

Experimental observation of net erosion of molybdenum being significantly reduced compared to gross erosion in the divertor of DIII-D is reported for well-controlled plasma conditions. For the first time, gross erosion rates were measured by both spectroscopic and non-spectroscopic methods. A net erosion rate of 0.73 ± 0.03 nm/s was measured using ion beam analysis (IBA) of a 1 cm diameter Mo-coated sample. For a 1 mm diameter Mo sample exposed at the same time the net erosion rate was higher at 1.31 nm/s. For the small sample redeposition is expected to be negligible thus comparison with the larger sample yielding a net to gross erosion estimate of $0.56 \pm 12\%$. The gross rate was also measured spectroscopically (386 nm MoI line) giving 2.45 nm/s \pm factor 2. The experiment was modeled with the REDEP/WBC erosion/redeposition code package coupled to the ITMC-DYN mixed-material code, with plasma conditions supplied by the OEDGE code using Langmuir probe data input. The code-calculated net/gross = 0.46, in good agreement with experiment.