Quantification of chemical erosion in the DIII-D divertor and implications for ITER

A.G. McLean^{a*}, P.C. Stangeby^b, B.D. Bray^c, S. Brezinsek^d, N.H. Brooks^c, J.W. Davis^b, R.C. Isler^a, A. Kirschner^d, R. Laengner^d, C.J. Lasnier^e, Y. Mu^b, J. Munoz^f, D.L. Rudakov^g, O. Schmitz^d, E.A. Unterberg^a, J.G. Watkins^h, D.G. Whyteⁱ, and C.P.C. Wong^e

^aOak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ^bUniversity of Toronto Institute for Aerospace Studies, Toronto, M3H 5T6, Canada ^cGeneral Atomics, P.O. Box 85608, San Diego, CA 92186-5608 USA ^dInstitut fuer Plasmaphysik Forschungszentrum, Juelich GmbH 52425, Juelich, Germany ^eLawrence Livermore National Laboratory, Livermore, California 94550, USA ^fOak Ridge Institute for Science and Education, Oak Ridge, Tennessee USA ^gUniversity of California, San Diego, La Jolla, California 92093, USA ^hSandia National Laboratories, Albuquerque, New Mexico 87185, USA ⁱMIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139, USA

Abstract

The Porous Plug Injector (PPI) has proven to be an invaluable diagnostic for *in situ* characterization and quantification of erosion phenomena in DIII-D. Previous work has led to derivation of three primary figures of merit for chemical erosion (CE) in attached and cold divertor conditions: relative intensity of C⁺ impurities from chemical and physical sources, the CE yield (Y_{chem}), and effective photon efficiencies for chemically eroded products. Application of these figures of merit for accounting of observed absolutely calibrated CI and CII emission intensities is demonstrated to produce a self-consistent solution at the DIII-D targets. Reinterpretation of the CI (C^0) spectral lineshape profile supports the relative roles of local chemical versus physical sputtering as previously determined for CII (C^+) . Finally, comparison of calculated *in situ* Y_{chem} to that measured *ex situ* suggests a tokamak-specific lower energy threshold for CE, and presents potentially major implications for prediction of tritium co-deposition near the divertor targets in ITER.

PACS numbers: 28.52.Fa, 29.30.-h, 52.40.Hf, 52.70.-m