Implementation of a new atomic basis for the He I equilibrium line ratio technique for electron temperature and density diagnostic in the SOL for H-mode plasmas in DIII-D

J.M. Munoz Burgos, O. Schmitz, E.A. Unterberg, S.D. Loch, C.P. Ballance

Abstract

Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR [O. Schmitz, *et al.*, Plasma Phys. Control. Fusion **50**, 115004 (2008)]. We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D.

This technique depends on the accuracy of the atomic data used in the Collisional Radiative Model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher *Rydberg* states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D.

PACS numbers: 52.25.Fi, 52.55.Fa, 51.60.+a

¹Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830-8050, USA

²Institut für Energieforschung-Plasmaphysik, Forschungszentrum Jülich, Association EURATOM-FZJ, Trilateral Euregio Cluster, Germany

³Oak Ridge National Laboratory, Oak Ridge, Tennesseee 37831, USA

⁴Auburn University, Auburn, Alabama, USA