Characterization of Chemical Sputtering Using the Mark II DiMES Porous Plug Injector in Attached and Detached Divertor Plasmas of DIII-D

A.G. McLean¹, J.W. Davis¹, P.C. Stangeby¹, S.L. Allen², J.A. Boedo³, B.D. Bray⁴, S. Brezinsek⁵, N.H. Brooks⁴, M.E. Fenstermacher², M. Groth², A.A. Haasz¹, E.M. Hollmann³, R.C. Isler⁵, C.J. Lasnier², Y. Mu¹, T.W. Petrie⁴, D.L. Rudakov³, J.G. Watkins⁶, W.P. West⁴, D.G. Whyte⁷, and C.P.C. Wong⁴

¹University of Toronto Institute for Aerospace Studies, Toronto, M3H 5T6, Canada
²Lawrence Livermore National Laboratory, Livermore, California 94550, USA
³University of California-San Diego, La Jolla, California 92093, USA
⁴General Atomics, San Diego, California 92186-5608, USA
⁵Institut fuer Plasmaphysik Forschungszentrum, Juelich GmbH 2425, Juelich, Germany
⁶Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
⁷MIT Plasma Science and Fusion Center, Cambridge, Massachusetts, USA

An improved, self-contained gas injection system for the Divertor Material Evaluation System (DiMES) on DIII-D has been employed for in-situ study of chemical erosion in the tokamak divertor environment. The Mark II porous plug injector (PPI) releases methane from the tile surface into the plasma at a rate precisely controlled by a small orifice flow restrictor, through a porous graphite surface into the divertor plasma at the outer strike point (OSP). Perturbation to local plasma is minimized, while also simulating the immediate environment of methane molecules released from a solid graphite surface. The release rate was the same order of magnitude as natural sputtering, ranging from 1.5-6.7x10¹⁷ C/s and corresponding to the carbon release rate at intrinsic chemical erosion yield of 1-3% in both attached and detached divertor plasmas. Photon efficiencies of CH₄ for measured local plasma conditions are reported and compared to previous results. The contribution of chemical versus physical sputtering to the source of C⁺ at the target is assessed through measurement of CII and CD/CH band emissions during release of CH₄ from the PPI, and due to intrinsic emission. A novel method based on historical CD-band emission analysis after boronization in DIII-D is implemented to account for BD-band contamination of the 4290-4310Å CD/CH-band emission. Finally, broadband spectroscopic data from DIII-D is interpreted for the first time with consideration of a quantified lower detection threshold on the CCD detector of the Multichord Divertor Spectrometer (MDS).

*Work supported in part by the U.S. Department of Energy under W-7405-ENG-48, DE-FG02-04ER54758, DE-FC02-04ER54698, DE-AC04-94AL85000, and DE-FG02-04ER54762.