

Effect of B-field Dependent Particle Drifts on ELM Behavior in the DIII-D Boundary Plasma,*

M.E. Fenstermacher (LLNL) A.W. Leonard, T.W. Petrie, General Atomics, M. Groth, C.J. Lasnier, G.D. Porter - LLNL J. Boedo, D.S. Gray, E. Hollmann, UCSD M.R. Wade, ORNL, L. Zeng, UCLA J. Watkins, SNLA,

Presented at the 16th PSI Meeting Portland, Maine May 24-28, 2004

Motivation - Type I ELMs could limit PFC lifetime in burning plasma tokamaks - "Minimum Energy" ELMs at high n_e might be tolerable

Summary I: SOL / divertor response to ELMs is a strong function of n_e for LSN $\nabla B \checkmark$

- ELM expelled pedestal particles appear far out (~ 4 cm) in SOL; T_e^{SOL} not perturbed even with ΔT_e^{ped} at low n_e .
- Pedestal refueled by multi-step charge exchange neutrals; fast response consistent with local neutral source during ELM (main chamber surfaces)
- At low n_e: inner leg burns-through during ELM; large heat flux observed
- At high n_e: outer leg during ELM:
 - Carbon radiation burns-through to near target
 - Large particle flux increase
 - Target electron density and D_{α} drop
 - No heat flux observed
- Rapid rise in midplane and divertor \mathbf{D}_{α} , and target \mathbf{j}_{sat} at thermal energy loss
- SOL parallel pulse propagation times consistent with ion sound speeds at moderate high density
 - Inner D_{α} delayed ~ 250 μ sec after outer D_{α}
 - Midplane to divertor radiation pulse propagation times ~ 100 μsec

Summary II: SOL / divertor response to ELMs is a strong function of B_T direction

- D_{α} and P_{rad} Timing during ELMs:
 - LSN $\nabla B \Psi$:
 - Low n_e: Delay of inner vs. outer divertor D_{α} reduced below ion convection times in SOL, P_{rad} delay negative (inner occurs before outer)
 - High n_e: Delays consistent with ion convection timescale
 - LSN ∨B ↑ :
 - High and low n_e: Delay below ion convection timescale
- Heat Flux during ELMs:
 - LSN ∇B ↓ High δ : Peak inner / outer heat flux asymmetry ≤ 2x at low n_e, even larger at high n_e
 - Outer ELM peak heat flux reduced with ne
 - LSN $\nabla B \checkmark Low \delta$: Peak inner / outer heat flux asymmetry ~2x at low n_e, drops to ~1.5 at high n_e
 - LSN $\nabla B \uparrow Low \delta$: Peak inner / outer ratio ~ 2 independent of density

Surface layer effects may play a role in measurement

Summary III: Initial UEDGE ELM modeling with drifts shows features of B_T dependence

- Model assumptions guided by measurements
 - Midplane instability and particle loss appear for 200-500 μsec before pedestal thermal energy loss
- Model Verification and Fluid Simulations
 - ELM energy transport by parallel ion convection at ion sound speeds verified by measurements
 - Initial UEDGE simulations show characteristics of ELM propagation at ion sound speed
 - Delays of inner D_{α} from outer D_{α} timing
 - Slower D_{α} rise time in inner vs outer divertor
- Some of B_T dependence consistent with each of two models:
 - Changing ExB produces vastly different pre-ELM divertor conditions ==> ELM response is different even though ExB and other particle drifts not playing a role during ELM event
 - ExB particle drift play a strong role during ELM due to large Te gradients (E-field) created by ELM purturbation

Configuration and Diagnostics

DIII-D fast diagnostics used in this poster cover both the outer midplane and lower divertor

Parameter	Fast Diagnostic F	Rate / Integration time	114639 3100.00
SOL ne, Te profiles	Reciprocating probe	≤ 1000 kHz	M
Pedestal ne, Te	Thomson scattering	1 ns @ 6 ms	
Midplane ${\sf D}_{lpha}$	Filterscopes array	≤ 100 kHz	
Midplane inner SOL line radiation	Gated, intensified camera	20 us @ 17 ms	
n _e ^{ped} gradient	Reflectometry	≤ 10 kHz	
Total radiated power	Bolometer array	≤ 500 kHz	
Divertor line radiation	Gated, intensified camera	20 us @ 17 ms	
Target heat flux	IRTV line scan	≤ 9 kHz	
Target ion flux	Target probes	≤ 100 kHz	
Toroidal target current	Tile current array	≤ 200 kHz	
Calibrated divertor line radiation	Filterscopes array	≤ 100 kHz	
Divertor line density	Interferometer	≤ 50 kHz	
Edge ion temperature	CER	≤ 2 kHz	

M E Fenstermacher PSI 2004 6/7/04 3

0 1 2 3 4 5 6

Cross correlation analysis finds delay of ELM response in one signal compared with another.

- Cross correlation of signals applied in ~ 8 ms window centered on the ELM event at midplane
- Delays of peak response dominates over delay of initial response.

Average ELM behavior in $\nabla B \checkmark vs \nabla B \uparrow shows$ changes in inner vs outer asymmetry but similar timing

Background: LSN $\nabla B \checkmark$ from 2002

Conclusions: Model of SOL ELM propagation by ion convection supported by some, but not all, of the ELM data

- Model says:
 - Deposition profile should be set by perpendicular vs. parallel transport in SOL
 - Deposition time set by L_{\parallel}/C_{s} for ELM expelled ions
 - ELM energy may be limited if ELM duration < ion transit time to targets
- Model supported by data:
 - Density dependence of inner vs. outer target delays
 - ΔT_e^{ped} delay until $\Delta t_{ELM} \sim L_{\parallel} / C_s$
 - Divertor density rise higher than n_e^{ped} due to release of trapped neutrals
- Model not supported by data:
 - Some inner vs. outer SOL delays backwards (eg. P_{rad}, J_{sat})
 - Outer target heat flux width not wide enough to be consistent with observed midplane density perturbation in the far SOL, even narrower on the inside
 - Fast T_e^{ped} drop in low density case more like reconnection
- Comparison of ELM propagation with ion BxVB drift into vs. out of divertor should increase understanding of ELM propagation physics.

DIII-D fast diagnostics used in this poster cover both the outer midplane and lower divertor

Parameter	Fast Diagnostic	Rate / Integration time (interfermeter) (Da)
SOL ne, Te profiles	Reciprocating probe	≤ 1000 kHz
Pedestal ne, Te	Thomson scattering	1 ns @ 6 ms
Midplane ${\sf D}_{lpha}$	Filterscopes array	≤ 100 kHz
Midplane inner SOL line radiation	Gated, intensified camer	ra 20 us @ 17 ms
n _e ^{ped} gradient	Reflectometry	≤ 10 kHz
Total radiated power	Bolometer array	≤ 500 kHz
Divertor line radiation	Gated, intensified camer	ra 20 us @ 17 ms
Target heat flux	IRTV line scan	≤ 9 kHz
Target ion flux	Target probes	≤ 100 kHz
Toroidal target current	Tile current array	≤ 200 kHz
Calibrated divertor line radiation	Filterscopes array	≤ 100 kHz (soft X-ra
Divertor line density	Interferometer	≤ 50 kHz 01
Edge ion temperature	CER	≤ 2 kHz 110493 2500 (fixed probes)

(Mirnov loop)

Simple model of ELM particle and energy transport in the SOL and divertor supported by calculation results*

- Instability flattens density and temperature profiles (electrons and ions) at the outer midplane separatrix
- Fast electrons on field lines connected to targets go to targets in electron transit time (~ several µsec)
 - Sheath potential raised and electron conduction gets cut-off
 - T_e in SOL equilibrated somewhat
- Local ions in sheath strike target at high energy take out some fraction of ELM electron energy (~ 10 μ sec)
- ELM expelled ions transit to elevated sheath at ion sound speed ($\textbf{T}_i^{\text{ped}}$) ~ several 100 $\mu \textbf{sec}$
 - ELM ions falling through sheath remove ELM electron and ion energy
- Neutrals from increased recycling of ELM ions dissipate in recycling time scale (~ several ms).
 - * A. Bergmann 2002 submitted to NF
 - D. Tskhakaya PSI02 submitted to JNM
 - T. Rognlien PSI02 submitted to JNM

Complicating effects may be important in SOL / divertor ELM transport

- More ELM electron energy may get to targets on short time scale if:
 - Secondary electron emission at targets reduces sheath build-up
 - High energy ions striking targets liberate trapped neutrals increasing local ion source
- Perpendicular transport in upper SOL may reduce ions available to carry ELM energy to targets
- Impurity release by fast ion physical sputtering on targets produces radiation
- Loss of pedestal thermal energy (ΔT_e^{ped}) may require instability duration > ion transit time to targets
 - $\Delta \, {\rm T_e}^{\rm ped}$ may not occur until instability has been growing for an ion transit time
 - If ion transit time is long, ΔT_e^{ped} may not occur at all

Low n_e ELMs: Thomson profiles show particles lost from pedestal appear in the far SOL; pedestal ΔT_e not seen in SOL

High n_e ELMs: Particles seen far out in SOL at midplane; pedestal ΔT_e very small

Low n_e ELMs: fast bolometer chords show propagation of pulse around SOL to divertors

E. Hollmann

• Delays are consistent with ion transit time (outer midplane to inner strike point ~ 100 μs) not electron conduction time.

High n_e ELMs: Fast bolometer chords show propagation of pulse around SOL to divertors

- Delays are consistent with ion transit time (outer midplane to inner strike point ~ 100 μs) not electron conduction time.

Low n_e ELMs: Multi-diag. timing shows evidence of ELM particle transport from pedestal before thermal energy loss

• Two phases to ELM build-up: particle loss followed by rapid thermal energy loss

High n_e ELMs: Multi-diag. timing shows completely different behavior of outer divertor n_e and heat flux vs. low n_e ELMs

• No measurable outer target heat flux - still unexplained

Low n_e ELMs: Gated divertor TV shows burn-through of inner divertor leg: CIII moves from X-point to inner strikepoint

Groth PSI02

• Burn-through occurs between 10 and 130 μ sec after the ELM start

High n_e ELMs: Gated divertor TV shows burn-through of outer divertor leg: CIII moves from X-point to outer strikepoint

Groth PSI02

- Radiation increase near X-point occurs between 80 and 110 µsec after ELM start
- Burn-through occurs between 110 and 230 µsec after the ELM start

Comparison of $\nabla B \checkmark vs. \nabla B \uparrow Effects$

LSN $\nabla B \checkmark Low \delta$ ELMs: Particle perturbation seen much farther out in midplane SOL than ΔTe , especially at low ne

- **Reflectometer shows** reduction of pedestal density [curves 1,2,3,4]
- **Density lost from pedestal** appears in SOL at limiters [curves **3**,4]
- **Recovery of pre-ELM** density profile takes ~ 3 ms [curves 4, 5]
- During ELM n_e~10¹⁹m⁻³ at 3.5 cm (3 $\lambda_{ne}^{pre-ELM}$) from pre-ELM separatrix [curve 3]

LSN $\nabla B \checkmark$ High δ ELMs: Particle perturbation seen much farther out in midplane SOL than ΔTe for both low and High n_e

- **Reflectometer** shows motion of density out to the limiter region (5cm from separatrix) in ~500 µsec [curves 1 -->2]
- **Recovery of pre-ELM density** profile takes ~ 1.5 ms [curves 2 --> 5]

SAN DIEGO

M E Fenstermacher PSI 2004 6/7/04 22

2.40

Low $n_e High \delta$ ELMs: Radial velocity ~ 600 m/s from reflectometer agrees with ExB velocity from probes Zeng, Boedo

- Reflectometer data to 40 kHz shows radial velocity of 500 m/s for 5e19 m-3 surface at midplane
- Probe measurement of "density blobs" shows ExB radial velocity of 550 m/s

LSN $\nabla B \checkmark$ **ELMs:** Delay of inner vs outer D_{α} about 3x the difference in ion transit times from midplane to targets.

- Ion transport assumed at sound speed evaluated at pedestal Te
- Scatter increases and delay time drops to small value at very low density
 - Evidence of fast electron effects ?
 - Evidence of change in character of ELM from ballooning to peeling dominated ?

LSN $\nabla B \uparrow ELMs$: Delay of inner vs outer D_{α} with $\nabla B \uparrow$ much smaller than in $\nabla B \checkmark$ case.

- With ∇B out of divertor inner leg plasma conditions similar to outer leg
- **Dependence of delays** on ∇B direction may be due to:
 - **Difference** in _ pre-ELM divertor conditions?
 - **Role of ExB drifts** _ during ELM event ?

PSI 2004 6/7/04 25

LSN $\nabla B \checkmark ELMs$: Delay of inner vs outer P_{rad} less than D_{α} delay

- At high n_e the delay is 2x smaller than in ${\rm D}_{\alpha}$
- At low ne, ELM P_{rad} (inner) before ELM P_{rad} (outer)
 - This also seen in analysis of spatial zones by Hollman (2002)
 - Fast electron pulse burns through detached inner divertor ?

LSN $\nabla B \uparrow ELMs$: Delay of inner vs outer P_{rad} similar to delays of D_c

- Data set limited to high q shots because outer P_{rad} saturated at low q
- Small delay (albeit with large scatter)
 - No clear variation with density

LSN $\nabla B \uparrow Low \delta$ ELMs: Δn_e seen much farther out in midplane SOL than ΔT_e , especially at low n_e Zeng

- Reflectometer shows reduction of pedestal density [curves 2 -->3]
- Density lost from pedestal appears far out in SOL; $n_e \sim 10^{19} m^{-3}$ at 4.5 cm ($4 \lambda_{ne}^{pre-ELM}$) from pre-ELM separatrix [curve 3]
- Recovery of pre-ELM density profile takes
 > 1.5 ms [curves 4, 5, 6]
 - Intermediate recovery stage with "pedestal" in the SOL (curve 5)
 - Full recovery after ~ 5 ms (curve 6)

LSN $\nabla B \uparrow Low \delta$ ELMs: Δn_e seen much farther out in midplane SOL than ΔT_e also at high n_e Zeng,

- Reflectometer shows particles ejected into SOL [curves 1, 2, 3]
- Density profile modified before large Dα rise [curve 2]
- Far SOL density rise to $n_e \sim 10^{19} m^{-3}$ at 6 cm ($5 \lambda_{ne}^{pre-ELM}$) from pre-ELM separatrix [curve 3]
- Recovery of pre-ELM density profile takes
 > 1 ms [curves 3,4]

LSN ∨B ↓ ELMs: Inner / outer target energy density asymmetry during ELMs decreases slightly with n_e

- Inner / outer peak energy density ratio ~ 2 at low $n_e/n_G \sim 0.4$, ratio decreases to 1.5 at higher density, $n_e/n_G > 0.6$
- Profiles averaged over 10 20 ELMs.
- Surface layer effects may be playing an important role in these results.

LSN $\nabla B \checkmark$ ELMs: Inner / outer target heat flux asymmetry during ELMs increases with n_e; profile broadens \leq factor of 2

- Outer target heat flux drops to near zero at high density
- Peak of inner heat flux profile moves away from SP
- Inner / outer energy ratio ~ 2 from previous experiments - still working on present calibrations
- ELMs broader than time averaged by 2x on outer leg but narrower by up to 1.5x on inner leg.

Lasnier, Leonard PSI02 Invited

LSN $\nabla B \uparrow ELMs$: Inner / outer target energy density asymmetry during ELMs nearly constant with n

- Little change in profiles from low to moderate density, $0.27 < n_e/n_{Gr} < 0.4$
- In / out asymmetry ~ 2.0 independent of density
- **Profiles averaged** over 10 - 20 ELMs.
- Surface layer effects may be playing an important role in these results.

PSI 2004 6/7/04 32

Comments: SOL/divertor ELM behavior depends on both n_eand B_T-dependent particle drifts

- Delays of inner vs outer D_{α} and $P_{rad} = f(n_e, B_T)$
 - ELM poloidal character may change with ne
 - Fast electron effects may dominate at low ne; ion convection at high ne
 - Difference in pre-ELM divertor conditions with B_T may play a role
- Pedestal particles ejected far into midplane SOL, 3 5 $\lambda_{ne}^{pre-ELM}$, independent of n_e , B_T
 - Ejected T_i (and heat flux) at main chamber wall not known
 - Ejected T_e falls rapidly with radius in SOL

(see also Zeng O-29 Rudakov O-24, Boedo P2-5)

- Asymmetry of peak energy density weak f(n_e, B_T)
 - Asymmetry decreases slightly with n_e for $\nabla B \checkmark$; nearly constant for $\nabla B \uparrow$
 - May be contaminated by surface layer effects

UEDGE SS and ELM Modeling - $\nabla B \checkmark$

UEDGE SS and ELM Modeling - $\nabla B \uparrow$

UEDGE simulations of pre-ELM $\nabla B \checkmark vs \nabla B \uparrow cases$ show similar midplane T_e , T_i but changes in density profiles

UEDGE simulations of pre-ELM $\nabla B \checkmark vs \nabla B \uparrow cases$ show completely different inner divertor conditons.

UEDGE simulations of pre-ELM $\nabla B \checkmark vs \nabla B \uparrow cases$ show very different outer divertor SOL plasma

UEDGE ELM simulation shows pedestal behavior similar to low n_e case

Ε

Μ

UEDGE ELM simulation with VB \uparrow shows weak perturbation of midplane profiles

- Exponential radial and Gaussian poloidal perturbation near midplane
- At 1.0 ms, increase D₁ by 10x for 500 μ s, then add increase of X by 10x for 50 μ s
- Relaxation phase with transport coefficients from between-ELM solution
- Almost no SOL T_e perturbation similar to data
- SOL density bump flattens during ELM not seen in data 0.45 Midplane n_{e} (10²⁰ m⁻³) Midplane Te (ev) ⁷⁰⁰ Fxy10 SOL SOL 0.27 - 005 - 005 - 010 - 010 Core Core 0.4 - 020 - 020 <u>8</u> Fxy10 Time (s) Time (s) PSI 2004 6/7/04 40

Ε

Μ

\mathbf{D}_{α} chord integrals vs. time from UEDGE solution simulate filterscope signals

- Inner Divertor: Initial slow \mathbf{D}_{α} rise at \mathbf{D}_{\perp} increase
 - Fast ${\rm D}_{\!\alpha}$ rise at $\,\chi\,\,$ increase
 - Long slow (several ms) recovery on recycling timescale
- Outer Divertor: Similar response to D $_{\perp}$ and χ increases
 - More complicated recovery evolution

P_{rad} chord integrals vs. time from UEDGE solution simulate DISRAD-II signals

- Inner Divertor: Sharper rise at ${\rm D}_{\!\!\perp}$ change than in ${\rm D}_{\!\!\alpha}$
 - More rapid recovery than in ${\rm D}_{\alpha}$
- Outer Divertor Relative response to χ change much larger than for D_{α}

D_{α} chord integrals vs. time from UEDGE solution with $\nabla B \uparrow$ simulate filterscope signals

- Inner Divertor: Response to D_{\perp} change similar in $\nabla B \checkmark$ and $\nabla B \uparrow$
 - Response to χ change is larger in $\nabla B \uparrow han$ in $\nabla B \checkmark$
- Outer Divertor Positive and negative response to both D_ and χ changes Unexplained

P_{rad} chord integrals vs. time from UEDGE solution with $\nabla B \uparrow f$ simulate DISRAD-II signals

• Inner Divertor: - Initial response to D₁ and X change similar in $\nabla B \checkmark$ and $\nabla B \uparrow$

- Recovery phase more complicated in $\nabla B \uparrow han$ in $\nabla B \downarrow$

• Outer Divertor - Response to χ much less in $\nabla B \uparrow$ than in $\nabla B \checkmark$

Inner vs Outer correlation of UEDGE simulated Da and Prad signals show features similar to data correlations

- Correlation of inner vs. outer divertor synthetic DISRAD-II signals yields predictions of delays similar to observations
 - Normalized D_{α} delay in the range [0.5 3.6] similar to data at $n_e/n_{Gr} \sim 0.4$
 - Normalized P_{rad} in the range [0 1.9] less delay than in D_{lpha} as seen in the data

Inner vs outer correlation of Prad signals with $\nabla B \uparrow$ show features similar to data correlations

- Correlation of inner vs. outer divertor synthetic D_{α} and P_{rad} signals yields
 - Normalized delay of D $_{\alpha}$ in the range [-4.0 +1.9]: similar timing inversion occurs in data at n $_{e}$ /n $_{G}$ ~ 0.5
 - Normalized delay in P_{rad} in the range [-5.0 +1.8], However most radii have small
 delay similar to data

Simulated inner and outer target heat fluxes broaden at most by a factor of 2 during ELM

- Heat flux broadens by factors of 1.5 x (inner) and 1.2 (outer) during D_{\perp} increase
- Heat flux profile broadening increases to 2.0x (inner) and 1.8 (outer) by end of χ

SAN DIEGO

PSI 2004 6/7/04 47

With $\nabla B \uparrow b$ broadening of heat flux during ELM less on inner and greater on outer target than with $\nabla B \checkmark$

- Heat flux broadens by factors of 1.1 x (inner) and 1.5 (outer) during D_{\perp} increase
- Heat flux profile broadening increases to 1.5x (inner) and 2.2x (outer) by end of X increase
 90

With $\nabla B \checkmark$ private flux region poloidal ExB velocity increases 2x at ELM crash

With $\nabla B \uparrow h$ change to PF poloidal v_{ExB} larger at inner target and smaller at outer target than with $\nabla B \checkmark$

Simulation with multiple ELMs shows slow relaxation to new parameter regime between ELMs

- Divertor particle and energy fluxes between ELMs are still evolving after 3 ELMs
 - Effect stronger on inner divertor
 - Indicates long time-scale effects (carbon, neutrals) still responding to ELMs
- Future single ELM simulations should start from "ELMing equilibrium" not steady state between-ELM solution

Summary: SOL/divertor ELM behavior depends on both density and B-field dependent particle drifts

• Normalized delays of inner vs outer D_{α} and P_{rad}

depend on n_e

- Observations
 - Stronger n_e dependence in normal drifts direction
 - Delay greater and recovery longer for D_{α} than for P_{rad}
- Possible Explanations
 - ELM poloidal character may change with ne
 - Fast electron effects may dominate at low n_e; ion convection at high n_e
- Normalized delays of inner vs outer ${\rm D}_{\alpha}$ and ${\rm P}_{rad}$ change with B-dependent drifts
 - Delays much less in reversed drifts case
 - Differences in pre-ELM divertor conditions with B_T play a role
 - Different response of E_r to ELM in normal and reversed drifts cases may affect E x B drifts during ELM evolution
- Pedestal particles ejected far into SOL independent of n_e or drifts direction

Summary: UEDGE ELM simulations including drifts show evolution and B-field dependence similar to data

- Model of ELM as ${\rm D}_{\perp}$ and χ increases supported by similarity of calculated and measured ELM evolution
 - Initial response of simulated ${\rm D}_{\alpha}$ and ${\rm P}_{rad}$ to ${\rm D}_{\perp}$ increase and larger response to χ increase similar to measured ELM signals
 - Pedestal density and temperature drops with SOL n_e increase and unchanged SOL T_e similar to data from low ne plasmas
 - As in the data, simulated delays larger for $\rm D_{_{C}}$ than for $\rm P_{rad}$ in normal drifts case; small $\rm P_{rad}$ delays and positive/negative delay in $\rm D_{_{C}}$ for reversed drifts case
 - Simulated Q_{div} broadens ~ 2x at ELM crash in normal drifts case, broadening less in reversed drifts case.

• UEDGE cases with normal and reversed drifts shows B-field dependent features seen in data

- Delays in ${\rm D}_{\alpha}{\rm and}~{\rm P}_{rad}$ less in reversed drifts simulations consistent with measurements
- ELM perturbation of divertor Er and poloidal particle drifts may contribute to divertor ELM response

