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Motivation - Type I ELMs could limit PFC life-
time in burning plasma tokamaks - “Minimum
Energy” ELMs at high ne might be tolerable
• To design future PFCs

requires knowledge of ELM
energy, spatial profile on
surfaces and deposition
time.
– Pedestal stability-

key to reducing
ELM sources

– SOL and divertor
effects-key to
reducing ELM fluxes
on PFCs

• ELMs behavior in the
boundary very different at
low and high ne

– Midplane pedestal
perturbation different

– Difference in divertor
plasma response
complex because
pre-ELM divertor
conditions strong
function of density 0.01 0.1 1 10
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Summary I: SOL / divertor response to ELMs
is a strong function of ne for LSN ∇B �

• ELM expelled pedestal particles appear  far out (~ 4 cm) in SOL;
Te

SOL not perturbed even with ∆Te
ped at low ne.

• Pedestal refueled by multi-step charge exchange neutrals; fast
response consistent with local neutral source during ELM (main
chamber surfaces)

• At low ne: inner leg burns-through during ELM; large heat flux
observed

• At high ne: outer leg during ELM:
– Carbon radiation burns-through to near target
– Large particle flux increase
– Target electron density and Dα drop

– No heat flux observed

• Rapid rise in midplane and divertor Dα, and target  jsat at thermal
energy loss

• SOL parallel pulse propagation times consistent with ion sound
speeds at moderate - high density
– Inner Dα delayed ~ 250 µsec after outer Dα
– Midplane to divertor radiation pulse propagation times ~

100 µsec
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Summary II: SOL / divertor response to
ELMs is a strong function of BT direction

• Dα and Prad Timing during ELMs:

– LSN ∇B � :

• Low ne:  Delay of inner vs. outer divertor Dα reduced
below ion convection times in SOL, Prad delay
negative (inner occurs before outer)

• High ne:  Delays consistent with ion convection
timescale

– LSN ∇B � :

• High and low ne:  Delay below ion convection
timescale

• Heat Flux during ELMs:

– LSN ∇B � High δ :  Peak inner / outer heat flux
asymmetry ≤ 2x at low ne, even larger at high ne
• Outer ELM peak heat flux reduced with ne

– LSN ∇B � Low δ :  Peak inner / outer heat flux
asymmetry ~2x at low ne, drops to ~1.5 at  high ne

– LSN ∇B � Low δ : Peak inner / outer ratio ~ 2
independent of density

– Surface layer effects may play a role in measurement
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Summary III: Initial UEDGE ELM modeling
with drifts shows features of BT dependence

• Model assumptions guided by measurements

– Midplane instability and particle loss appear for 200-500
µsec before pedestal thermal energy loss

• Model Verification and Fluid Simulations

– ELM energy transport  by parallel ion convection at ion
sound speeds verified by measurements

– Initial UEDGE simulations show characteristics of ELM
propagation at ion sound speed

• Delays of inner Dα from outer Dα timing
• Slower Dα rise time in inner vs outer divertor

• Some of BT dependence consistent with each of two models:

– Changing ExB produces vastly different pre-ELM divertor
conditions ==> ELM response is different even though
ExB and other particle drifts not playing a role during ELM
event

– ExB particle drift play a strong role during ELM due to large
Te gradients (E-field) created by ELM purturbation
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DIII-D fast diagnostics used in this poster cover both the
outer midplane and lower divertor
Parameter Fast Diagnostic       Rate / Integration time
SOL ne, Te profiles Reciprocating probe ≤ 1000 kHz

Pedestal ne, Te Thomson scattering 1 ns @ 6 ms

Midplane Dα Filterscopes array ≤ 100 kHz

Midplane inner SOL Gated, intensified camera                 20 us @ 17 ms
line radiation

ne
ped gradient Reflectometry ≤ 10 kHz

Total radiated power Bolometer array                           ≤ 500 kHz

Divertor line radiation Gated, intensified camera                20 us @ 17 ms

Target heat flux IRTV line scan                              ≤ 9 kHz

Target ion flux Target probes ≤ 100 kHz 

Toroidal target current Tile current array ≤ 200 kHz

Calibrated divertor Filterscopes array ≤ 100 kHz
line radiation

Divertor line density Interferometer ≤ 50 kHz

Edge ion temperature CER ≤ 2 kHz

114639 3100.00

0 1 2 3 4 5 6

81

1

0 1 2 3 4 5 6

81

1



M E Fenstermacher  
PSI 2004    6/7/04     4

NATIONAL FUSION FACILITY
S A N  D I E G O

DIII–D

     
0.0

1.2

2.4

     
0.0

0.1

0.2

0.3

     
0.0

0.5

1.0

1.5

     
0.0

0.2

0.4

     
0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
0.00

0.05

0.10

Cross correlation analysis finds delay of ELM response in
one signal compared with another.

• Cross correlation of signals
applied in ~ 8 ms window
centered on the ELM event
at midplane

• Delays of peak response
dominates over delay of
initial response.
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Background:  LSN ∇B � from 2002
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Conclusions: Model of SOL ELM propagation by ion
convection supported by some, but not all, of the ELM data
• Model says:

– Deposition profile should be set by perpendicular vs. parallel transport in SOL

– Deposition time set by L|| / Cs for ELM expelled ions

– ELM energy may be limited if ELM duration  < ion transit time to targets

• Model supported by data:

– Density dependence of inner vs. outer target delays
– ∆Te

ped delay until ∆tELM ~ L|| / Cs

– Divertor density rise higher than ne
ped due to release of trapped neutrals

• Model not supported by data:

– Some inner vs. outer SOL delays backwards ( eg. Prad, Jsat )

– Outer target heat flux width not wide enough to be consistent with observed
midplane density perturbation in the far SOL, even narrower on the inside

– Fast Te
ped drop in low density case - more like reconnection

• Comparison of ELM propagation with ion Bx∇B drift into vs. out of divertor should
increase understanding of ELM propagation physics.
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DIII-D fast diagnostics used in this poster cover both the
outer midplane and lower divertor
Parameter Fast Diagnostic       Rate / Integration time
SOL ne, Te profiles Reciprocating probe ≤ 1000 kHz

Pedestal ne, Te Thomson scattering 1 ns @ 6 ms

Midplane Dα Filterscopes array ≤ 100 kHz

Midplane inner SOL Gated, intensified camera                 20 us @ 17 ms
line radiation

ne
ped gradient Reflectometry ≤ 10 kHz

Total radiated power Bolometer array                           ≤ 500 kHz

Divertor line radiation Gated, intensified camera                20 us @ 17 ms

Target heat flux IRTV line scan                              ≤ 9 kHz

Target ion flux Target probes ≤ 100 kHz 

Toroidal target current Tile current array ≤ 200 kHz

Calibrated divertor Filterscopes array ≤ 100 kHz
line radiation

Divertor line density Interferometer ≤ 50 kHz

Edge ion temperature CER ≤ 2 kHz
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Simple model of ELM particle and energy transport in the
SOL and divertor supported by calculation results*
• Instability flattens density and temperature profiles (electrons and ions) at the outer

midplane separatrix

• Fast electrons on field lines connected to targets go to targets in electron transit time
(~ several µsec)
– Sheath potential raised and electron conduction gets cut-off
– Te in SOL equilibrated somewhat

• Local ions in sheath strike target at high energy - take out some fraction of ELM
electron energy (~ 10 µsec)

• ELM expelled ions transit to elevated sheath at ion sound speed ( Ti
ped) ~ several 100

µsec

– ELM ions falling through sheath remove ELM electron and ion energy

• Neutrals from increased recycling of ELM ions dissipate in recycling time scale
(~ several ms).

*  A. Bergmann 2002 submitted to NF
   D. Tskhakaya PSI02 submitted to JNM
   T. Rognlien PSI02 submitted to JNM
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Complicating effects may be important in SOL / divertor
ELM transport

• More ELM electron energy may get to targets on short time scale if:
– Secondary electron emission at targets reduces sheath build-up
– High energy ions striking targets liberate trapped neutrals increasing local

ion source

• Perpendicular transport in upper SOL may reduce ions available to carry ELM
energy to targets

• Impurity release by fast ion physical sputtering on targets produces radiation

• Loss of pedestal thermal energy (∆Te
ped) may require instability duration > ion

transit time to targets
– ∆ Te

ped may not occur until instability has been growing for an ion transit
time

– If ion transit time is long, ∆ Te
ped may not occur at all
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Low ne ELMs:  Thomson profiles show particles lost from
pedestal appear in the far SOL; pedestal ∆Te not seen in SOL

• Linear extrapolation
to ELM time may
underestimate
perturbation in the
SOL
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High ne ELMs: Particles seen far out in SOL at
midplane; pedestal ∆Te very small

• Greater scatter in

high ne data - higher

SOL turbulence

levels
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Low ne ELMs: fast bolometer chords show
propagation of pulse around SOL to divertors

E. Hollmann, D. Gray, J. Boedo
UCSD
University of California San Diego

• Delays are consistent with ion transit time (outer midplane to inner strike point ~
100 µs) not electron conduction time.

E. Hollmann
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High ne ELMs: Fast bolometer chords show propagation
of pulse around SOL to divertors

E. Hollmann, D. Gray, J. Boedo
UCSD
University of California San Diego

• Delays are consistent with ion transit time (outer midplane to inner strike point ~
100 µs) not electron conduction time.

E. Hollmann
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Low ne ELMs: Multi-diag. timing shows evidence of ELM
particle transport from pedestal before thermal energy loss

• Two phases to ELM build-up: particle loss followed by rapid thermal energy loss
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High ne ELMs: Multi-diag. timing shows completely different
behavior of outer divertor ne and heat flux vs. low ne ELMs

• No rapid rising phase observed consistent with lack of thermal energy loss
• No measurable outer target heat flux -  still unexplained
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Low ne ELMs: Gated divertor TV shows burn-through of inner
divertor leg: CIII moves from X-point to inner strikepoint

• Burn-through occurs between 10 and 130 µsec after the ELM start

Groth PSI02
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High ne ELMs: Gated divertor TV shows burn-through of outer
divertor leg: CIII moves from X-point to outer strikepoint

• Radiation increase near X-point occurs between 80 and 110 µsec after ELM start
• Burn-through occurs between 110 and 230 µsec after the ELM start

Groth PSI02
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Comparison of ∇B �  vs. ∇B � Effects
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LSN ∇B � Low δ ELMs: Particle perturbation seen much
farther out in midplane SOL than ∆Te, especially at low ne

• Reflectometer shows
reduction of pedestal
density    [curves 1,2,3,4]

• Density lost from pedestal
appears in SOL at limiters
[curves 3,4]

• Recovery of pre-ELM
density profile takes
~ 3 ms    [curves 4 , 5]

• During ELM ne~1019m-3

at 3.5 cm ( 3 λne
pre-ELM )

from pre-ELM separatrix
[curve 3]
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LSN ∇B � High δ ELMs: Particle perturbation seen much
farther out in midplane SOL than ∆Te  for both low and High ne

• Reflectometer
shows motion of
density out to the
limiter region
(5cm from
separatrix) in
~500 µsec
[curves 1 -->2]

• Recovery of pre-
ELM density
profile takes
~ 1.5 ms
[curves 2 --> 5]

Zeng, Leonard
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Low ne High δ ELMs: Radial velocity ~ 600 m/s from
reflectometer agrees with ExB velocity from probes

• Reflectometer data to
40 kHz shows radial
velocity of 500 m/s
for 5e19 m-3 surface
at midplane

• Probe measurement of
“density blobs” shows
ExB radial velocity of
550 m/s

Zeng, Boedo
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LSN ∇B � ELMs: Delay of inner vs outer Dα about 3x the
difference in ion transit times from midplane to targets.

• Ion transport assumed at
sound speed evaluated at
pedestal Te

• Scatter increases and
delay time drops to small
value at very low density

– Evidence of fast
electron effects ?

– Evidence of change
in character of ELM
from ballooning to
peeling dominated ?

�  low q,     high δ
�  low q,     low δ
� high q,   low δ
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LSN ∇B � ELMs: Delay of inner vs outer Dα with ∇B�
much smaller than in ∇B� case.

• With ∇B out of divertor
inner leg plasma
conditions similar to
outer leg

• Dependence of delays
on ∇B direction may be
due to:

– Difference in
pre-ELM divertor
conditions ?

– Role of ExB drifts
during ELM event ?

�  low q,    low δ
� high q,   low δ
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LSN ∇B � ELMs: Delay of inner vs outer Prad
less  than Dα delay

• At high ne the delay is 2x
smaller than in Dα

• At low ne, ELM Prad (inner)
before ELM Prad (outer)

– This also seen in
analysis of spatial
zones by Hollman
(2002)

– Fast electron pulse
burns through
detached inner
divertor ?

�   low q,    high δ
� low q,    low δ
�  high q,   low δ
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LSN ∇B � ELMs: Delay of inner vs outer Prad similar
to delays of Dα

• Data set limited to high q
shots because outer
Prad saturated at low q

• Small delay (albeit with
large scatter)

– No clear variation
with density

�   low q,    low δ
�  high q,   low δ
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LSN ∇B � Low δ ELMs: ∆ne seen much farther out in
midplane SOL than ∆Te, especially at low ne

• Reflectometer shows
reduction of pedestal
density      [curves 2 -->3]

• Density lost from pedestal
appears far out in SOL;
ne~1019m-3 at 4.5 cm
( 4 λne

pre-ELM ) from pre-ELM
separatrix    [curve 3]

•  Recovery of pre-ELM
density profile takes
> 1.5 ms    [curves 4 , 5, 6]

– Intermediate recovery
stage with “pedestal” in
the SOL (curve 5)

– Full recovery after ~ 5
ms (curve 6)

Zeng
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LSN ∇B � Low δ ELMs: ∆ne seen much farther out in
midplane SOL than ∆Te also at high ne

• Reflectometer shows
particles ejected into
SOL  [curves 1, 2, 3]

• Density profile modified
before large Dα rise
[curve 2]

• Far SOL density rise to
ne~1019m-3 at 6 cm
( 5 λne

pre-ELM ) from pre-
ELM separatrix
[curve 3]

• Recovery of pre-ELM
density profile takes
>> 1 ms    [curves 3 ,4]

Zeng,

114642
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LSN ∇B � ELMs: Inner / outer target energy density
asymmetry during ELMs decreases slightly with ne

• Inner / outer peak
energy density
ratio ~ 2 at low
ne/nG ~  0.4, ratio
decreases to 1.5 at
higher density,
ne/nG > 0.6

• Profiles averaged
over 10 - 20 ELMs.

• Surface layer
effects may be
playing an important
role in these results.

ne/nGr = 0.44
ne/nGr = 0.56
ne/nGr = 0.62
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LSN ∇B � ELMs: Inner / outer target heat flux asymmetry
during ELMs increases with ne; profile broadens ≤ factor of 2

• Outer target heat flux
drops to near zero at
high density

• Peak of inner heat flux
profile moves away
from SP

• Inner / outer energy
ratio ~ 2 from previous
experiments - still
working on present
calibrations

• ELMs broader than
time averaged by 2x
on outer leg but
narrower by up to 1.5x
on inner leg.
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LSN ∇B � ELMs: Inner / outer target energy density
asymmetry during ELMs nearly constant with ne

• Little change in
profiles from low to
moderate density,
0.27 < ne/nGr < 0.4

• In / out asymmetry ~
2.0 independent of
density

• Profiles averaged
over 10 - 20 ELMs.

• Surface layer effects
may be playing an
important role in
these results.

ne/nGr = 0.27
ne/nGr = 0.41
ne/nGr = 0.61
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Comments: SOL/divertor ELM behavior depends on
both neand BT-dependent particle drifts

• Delays of inner vs outer Dα and Prad = f(ne, BT)
– ELM poloidal character may change with ne
– Fast electron effects may dominate at low ne; ion convection at high ne

– Difference in pre-ELM divertor conditions with BT may play a role

• Pedestal particles ejected far into midplane SOL, 3 - 5 λne
pre-ELM,

independent of ne, BT
– Ejected Ti (and heat flux) at main chamber wall not known

– Ejected Te falls rapidly with radius in SOL 

(see also Zeng O-29  Rudakov O-24 , Boedo P2-5)

• Asymmetry of peak energy density weak f(ne, BT)
– Asymmetry decreases slightly with ne for ∇B �; nearly constant for ∇B �

– May be contaminated by surface layer effects
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UEDGE SS and ELM Modeling - ∇B �



M E Fenstermacher  
PSI 2004    6/7/04     35

NATIONAL FUSION FACILITY
S A N  D I E G O

DIII–D

UEDGE SS and ELM Modeling - ∇B �
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UEDGE simulations of pre-ELM ∇B � vs ∇B � cases show
similar midplane Te, Ti but changes in density profiles

• D = 0.09 m2/s, χ e= χ i=0.35 m2/s, 5%
pumping at walls, unity recycling at targets,
6 carbon species, 40% of theoretical drifts

• Midplane Te and Ti profiles independent of
∇B direction

• Elevated density in midplane SOL, reduced
C6+ density in midplane pedestal
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UEDGE simulations of pre-ELM ∇B � vs ∇B � cases
show completely different inner divertor conditons.

• ∇B � inner divertor - Detached

– ne and n0 high to far SOL
– Te and Ti below 2 eV except very

close to ISP
• ∇B � inner divertor - Attached

– ne 2x lower and n0 10x lower in SOL
– Te and Ti =4 - 8eV throughout SOL
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UEDGE simulations of pre-ELM ∇B � vs ∇B � cases
show very different outer divertor SOL plasma

• ∇B � outer divertor - Attached far SOL

– ne and n0 low to far SOL
– Te and Ti = 5-8 eV into far SOL

• ∇B � outer divertor - Detached far SOL

– ne 5x higher and n0 10x higher in SOL
– Te and Ti < 2 eV throughout SOL
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E
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M

UEDGE ELM simulation shows pedestal behavior
similar to low ne case

• Exponential radial  and Gaussian poloidal perturbation near midplane

• At 1.0 ms, increase D⊥ by 10x for 500 µs, then add increase of χ by- 10x  for 50 µs

• Relaxation phase with transport coefficients from between-ELM solution

• Pedestal Te loss without substantial SOL increase - similar to data

• Pedestal ne loss (small) with ne increase into far SOL - similar to data
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UEDGE ELM simulation with ∇B � shows weak
perturbation of midplane profiles

• Exponential radial  and Gaussian poloidal perturbation near midplane

• At 1.0 ms, increase D⊥ by 10x for 500 µs, then add increase of χ by 10x  for 50 µs

• Relaxation phase with transport coefficients from between-ELM solution

• Almost no SOL Te perturbation - similar to data

• SOL density bump flattens during ELM - not seen in data
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Dα chord integrals vs. time from UEDGE solution
simulate filterscope signals

Fxx15

• Inner Divertor: - Initial slow Dα rise at D⊥ increase
- Fast Dα rise at  χ  increase
- Long slow (several ms) recovery on recycling timescale

• Outer Divertor: - Similar response to D ⊥ and χ increases
- More complicated recovery evolution

Fxx15Outer Leg Dα ChordsInner Leg Dα Chords

Time (ms)Time (ms)
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Prad chord integrals vs. time from UEDGE solution
simulate DISRAD-II signals

Fxx15

• Inner Divertor: - Sharper rise at D⊥ change than in Dα
- More rapid recovery than in Dα

• Outer Divertor - Relative response to χ change much larger than for Dα

Fxx15Outer Leg 
Prad Chords

Inner Leg 
Prad Chords

Time (ms)Time (ms)
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Dα chord integrals vs. time from UEDGE solution
with ∇B � simulate filterscope signals

Fxy10

• Inner Divertor: - Response to D⊥ change similar in ∇B �  and ∇B � 
- Response to χ change is larger in ∇B �  than in ∇B �

• Outer Divertor - Positive and negative response to both D⊥ and χ changes - Unexplained

Fxy10Outer Leg Dα ChordsInner Leg Dα Chords

Time (ms)Time (ms)
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Prad chord integrals vs. time from UEDGE solution
with ∇B � simulate DISRAD-II signals

Fxy10

• Inner Divertor: - Initial response to D⊥ and χ change similar in ∇B �  and ∇B �
- Recovery phase more complicated in ∇B � than in ∇B �

• Outer Divertor - Response to χ much less in ∇B � than in ∇B �

Fxy10Outer Leg 
Prad Chords

Inner Leg 
Prad Chords

Time (ms)Time (ms)
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Inner vs Outer correlation of UEDGE simulated Da and
Prad signals show features similar to data correlations

Fxx15

• Correlation of inner vs. outer divertor synthetic DISRAD-II signals yields predictions of
delays similar to observations

– Normalized Dα delay in the range [0.5 - 3.6] similar to data at ne/nGr ~ 0.4
– Normalized Prad in the range [0 - 1.9]  - less delay than in Dα as seen in the data

Fxx15
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Inner vs outer correlation of Prad signals with ∇B �
show features similar to data correlations

Fxy10

• Correlation of inner vs. outer divertor synthetic Dα and Prad signals yields
– Normalized delay of Dα in the range [-4.0 - +1.9]: similar timing inversion occurs in

data at ne/nG ~ 0.5
– Normalized delay in Prad in the range [-5.0 - +1.8], However most radii have small

delay similar to data

Fxy10
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Simulated inner and outer target heat fluxes broaden at
most by a factor of 2 during ELM

• Heat flux broadens by factors of 1.5 x (inner) and 1.2 (outer ) during D⊥ increase

• Heat flux profile broadening increases to 2.0x (inner) and 1.8 (outer) by end of χ
increase
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With ∇B � broadening of heat flux during ELM less on
inner and greater on outer target than with ∇B �
• Heat flux broadens by factors of 1.1 x (inner) and 1.5 (outer ) during D⊥ increase

• Heat flux profile broadening increases to 1.5x (inner) and 2.2x (outer) by end of X
increase
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With ∇B � private flux region poloidal ExB velocity
increases 2x at ELM crash
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With ∇B � change to PF poloidal vExB larger at inner
target and smaller at outer target than with ∇B �
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Inner SOL
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Simulation with multiple ELMs shows slow relaxation
to new parameter regime between ELMs

• Divertor particle and energy
fluxes between ELMs are still
evolving after 3 ELMs

– Effect stronger on inner
divertor

– Indicates long time-scale
effects (carbon, neutrals)
still responding to ELMs

• Future single ELM
simulations should start from
“ELMing equilibrium” not
steady state between-ELM
solution
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Summary: SOL/divertor ELM behavior
depends on both density and B-field
dependent particle drifts

• Normalized delays of inner vs outer Dα and Prad
depend on ne

– Observations

• Stronger ne dependence in normal drifts direction
• Delay greater and recovery longer for Dα  than for Prad

– Possible Explanations

• ELM poloidal character may change with ne
• Fast electron effects may dominate at low ne; ion

convection at high ne

• Normalized delays of inner vs outer Dα and Prad
change with B-dependent drifts

– Delays much less in reversed drifts case

– Differences in pre-ELM divertor conditions with BT play a role

– Different response of Er to ELM in normal and reversed drifts
cases may affect E x B drifts during ELM evolution

• Pedestal particles ejected far into SOL
independent of ne or drifts direction
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Summary:  UEDGE ELM simulations
including drifts show evolution and
B-field dependence similar to data

• Model of ELM as D⊥ and χ increases supported
by similarity of calculated and measured ELM
evolution

– Initial response of simulated Dα and Prad to D⊥ increase
and larger response  to χ increase similar to measured
ELM signals

– Pedestal density and temperature drops with SOL ne
increase and unchanged SOL Te similar to data from low
ne plasmas

– As in the data, simulated delays larger for Dα than for Prad
in normal drifts case; small Prad delays and
positive/negative delay in Dα for reversed drifts case

– Simulated Qdiv broadens ~ 2x at ELM crash in normal drifts
case, broadening less in reversed drifts case.

• UEDGE cases with normal and reversed drifts
shows B-field dependent features seen in data

– Delays in Dαand Prad less in reversed drifts simulations
consistent with  measurements

– ELM perturbation of divertor Er and poloidal particle drifts
may contribute to divertor ELM response




