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ABSTRACT

@ OSM analysis provides, in principle, a method for identifying the
2-D edge “fields” of ng, T, Tj, etc, which is the prerequisite for analyzing
the physics processes occurring in the edge, including impurity behavior

@ In order to further test this method, an OSM analysis of an extensive
edge database for an L-mode DIII-D discharge has been carried out,
the first part of which is reported here

® Consistency of OSM results with Langmuir probe, D, and edge

Thomson scattering measurements encourages further
development of the method
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OBJECTIVE

What’s wanted:

The 2-D “fields” of the primary quantities ng, Tg, T, v, V
throughout the SOL and divertor

What we’ve got:

— Measurements here and there of some of these quantities, e.g. from probes, Thomson
— Measurements of some secondary quantities, e.g. poloidal distribution of D,

The Task:

Piece the 2-D fields together from this limited database

One Method: [Onion-Skin Method, OSM, Analysis

107-00/rs



ORGANIZATION OF THIS POSTER

e 15t column: Abstract etc.
e 2"d column: OSM description
@ 3'd column: the DIII-D shot

e 4 5t columns: comparisons of OSM results with measurements
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ONION-SKIN METHOD, OSM, ANALYSIS

@ Solve the 1-D, along-B, plasma conservation equations using across-B
boundary conditions from experiment, e.g. ';at and T, across targets from
Langmuir probes to produce a(2-D solution

® The plasma solver is iterated with a 2-D neutral code, EIRENE, to
provide the particle, momentum and power terms associated with hydrogen recycle

@ |DFOLand O |: not required as input. The cross-field information is implicitly
contained in the cross-field boundary conditions. In fact, they can be extracted
from OSM analysis (= “Edge TRANSP”)
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Comparing Standard 2-D FLUID AND OSI, First the.. ..
STANDARD 2-D FLUID EQUATIONS, e.g. UEDGE

(Cylindrical geometry for illustration; use actual curvilinear, toroidal grid)
Solve for r and s directions simultaneously:

H a neu
1. Particles a—s”(n"”):Sp t(ras||)+ Sp.
} 10 on
where: SpL= F—(r ) and nvy.= I, =-D or ~ Mpinch
a 2 neu
2' Momentum g(pl + pe + minv“ + Tci) = Smm:l (r,S”) + SmOmJ_
Il
8V||
where: Spom. = ——r v T ]+ P, ]
3. lon Energy P 5 oT,
el L CERS i )y sl]] =+ eV, + Qur Q5 (%) + S,

where: Sg;; = raa [ a(kT) (kT+1mv”) ]

Hecton ety a [ip‘*v”_m"T“S/z aTe] =—eny| E|—Q,+ Q+ Q"+ Spe,
Js) 12 os)
J A(KT,)
where: SEeJ_Z%a—rl'[%kTeFr g S ]
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next, the . . . “ONION-SKIN” METHOD OSM EQUATIONS

PARALLEL — AND SM"eul _TERMS are the same as in 2-D fluid models

Apply to each flux-tube individually:

1. Particles: dis” (@v,)= S (r,5,)+ Sy,

lLsp , KNOWN from particle balance. Spatial variation of S, , to be SPECIFIED

mom

2. Momentum: diS”(pi+pe +mnv; +7;) = S (5) + Smms
fLsmom | KNOWN from particle balance. Spatial variation of S, ; to be SPECIFIED
0

(r’ sII) + Sgi,

3.lon Energy: d §p.+lm.nv2+n.)v R L
ds, [\25 " 27T T e

2 dTl ] neut
2

ds” =+ enV”E|| + Qeq+ Qi

L
jSEi . KNOWN from particle balance. Spatial variation of Sg; , to be SPECIFIED

(1)

4. Electron Energy: g [ 5 BV, — K, T dT,
ds, L2 ds,

t
] = _enV||E||_ Qeq +Qr+ Qg + Ske,

fLSEe . KNOWN from particle balance. Spatial variation of Sy, , to be SPECIFIED
()]

woroors  Use neutral code, e.g. EIRENE, iteratively, to get SNeut | Qneut terms



OSM OPTIONS FOR SPECIFYING Sp, |, Smom 1, Qi 1, Qee |

@ To mimic the standard diffusive assumption use:

S,, = constant x (0°n/or?) | ete.

where 92n/or2 is known from iteration, thus one can exiract the constant, i.e. extract

SOL SOL

DJ_ > X1

@ Or simply use Sp |_=constant, or o n, or o dn/or,

after all, we don’t actually know if cross-field transport is diffusive,

and if diffusive, we don’t know if DEOL, XEOL are spatially constant, etc.

GOOD NEWS:
The solutions are often insensitive to the spatial distribution of
Sp.1s Smom 1> Qg1 Qe » Particularly when the boundary
conditions are imposed at the downstream, target end
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OSM ANALYSIS OF A DIll-D L-MODE DISCHARGE
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DIII-D shot no. 86575: lower single null, L-mode, Pyg = 0.85 MW, ngg = 2.1x1019 m-3

Divertor Thomson Scattering, DTS, measured ng and T along R = 1.49 m X-point
was swept to map out the divertor plasma

An array of Langmuir Probes built into the divertor targets measured T and gt
across the targets

The poloidal distribution of D, light across the divertor measured by a
calibrated “filterscope”

An Upsteam Thomson Scattering System measured ng and T across the SOL
and main plasma



MAGNETIC EQUILIBRIUM FOR SHOT 86575 AT 1650 ms SHOWING
LOCATION OF EDGE DIAGNOSTICS

1 I I T ege ¢ ¢ T | f | I I
D F|Iterscopes
e ‘iié‘é‘s?
;
050
- i i
iy
e
LI
— A
= |
A ._:‘J“'l.-'
N It h
|1| 'Ili1
ih
i
__J\II]|H
ll'/‘hHll
|I ]
i
il
1* i
_Ol5 v
ay
/f// I booe e 5 B
&0 trodrn fel
Yent o fsP t:ﬂf - -
O 17 O Pl .T.:‘. IR
_1 .5 L1 T P L1

107-00/rs . . R (m)



EFIT
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OSM analysis depends centrally on the validity of the computational grid

Grid is generated from EFIT analysis, e.g. of magnetic pickup coil data

EFIT uncertainties are ~ 1 cm, e.qg. in locating separatrix

This is same order as SOL radial scale lengths

Experimental data were therefore shifted relative to the computational grid
by up to ~1 cm, to see if this would give a match between the OSM-calculated
and measured values of ng, Tg, etc. e.g. from Divertor and Upstream Thomson



UEDGE CODE ANALYSIS

@ A first-cut, multifluid UEDGE analysis (Gary Porter) was also carried out for
this shot/time

® Input: xfgL =X inL = 2.5 mzls, DEOL = 0.625 m2/s

@ Input: recycling coefficient at the walls and targets of unity

@ Input: carbon physical and chemical sputtering from the Toronto database
(Davis and Haasz, 1996 PSI)

® Input: plasma density was set to match the experimental value upstream
near the separatrix
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COMPARISON OF OSM AND DIVERTOR THOMSON ng
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ne (sy) profiles for the first 4 computational “rings” (onion skins) in the SOL, see earlier figure
Thomson: crosses

OSM: blue line

UEDGE code: red line

The OSP starts from the Langmuir probe values at the target (squares)

All data have been shifted by AR =-10 mm relative to the EFIT-based computational grid
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COMPARISON OF OSM AND DIVERTOR THOMSON Tg
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Te (s)) profiles for the first 4 computational “rings” (onion skins) in the SOL, see earlier figure
Thomson: crosses

OSM: blue line

UEDGE code: red line

The OSP starts from the Langmuir probe values at the target (squares)

All data have been shifted by AR = -10 mm relative to the EFIT-based computational grid
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COMPARISON OF OSM AND UPSTREAM THOMSON Te
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Te(Z) profiles along the line of the Upstream Thomson
Thomson: crosses

OSM: blue line

UEDGE code: red line

Thomson data have been shifted by AZ = +15 mm relative to the EFIT-based grid
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COMPARISON OF OSM AND UPSTREAM THOMSON ng
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ne(Z) profiles along the line of the Upstream Thomson
Thomson: crosses

OSM: blue line

UEDGE code: red line

Thomson data have been shifted by AZ = +15 mm relative to the EFIT-based grid
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COMPARISON OF OSM AND MEASURED

D, POLOIDAL DISTRIBUTION
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® D, emissivity (photons/m2/s) across the outer target

@ Experiment (filterscope): crosses
@ OSM: blue line

® UEDGE code: red line
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VALUES OF D} "AND - EXTRACTED FROM THE OSM ANALYSIS
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® Cross-field ion and electron power flows were added, so the |~ value is an average of y ',
SOL
and X1ij

@ The trend for XEOL (r) to increase with distance into the SOL has also been reported for JET
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CONCLUSIONS

® OSM analysis has been tested against a larger edge data set than before

® OSM results are within error/scatter of Langmuir probe, D, and edge
Thomson measurements, encouraging further testing and development of the method

® A number of issues remain to be addressed:

— EFIT uncertainties license data shifting, but may “sweep under the carpet”
real discrepancies, missing physics, etc.; analysis of other discharge types,
direction of B, and yet larger edge sets, are required

— Thomson data are particularly valuable, but have substantial scatter
(Thomson samples the fluctuations). Un-swept, averaged data required

— Detachment, PFZ, and impurity modeling are still to be tackled

— Coupling to UEDGE code
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